Math, asked by kartikeyshrivastav54, 2 months ago

9. sin4 theta + 2sin2 theta cos2 theta + cos4 theta =1.​

Answers

Answered by MrImpeccable
5

ANSWER:

To Prove:

  • sin^4 ө + 2sin^2 ө cos^2 ө + cos^4 ө = 1

Proof:

We need to prove that,

\implies\sin^4\theta+2\sin^2\theta\cos^2\theta+\cos^4\theta=1

Taking and solving LHS,

\implies\sin^4\theta+2\sin^2\theta\cos^2\theta+\cos^4\theta

So,

\implies(\sin^2\theta)^2+2(\sin^2\theta)(\cos^2\theta)+(\cos^2\theta)^2

We know that,

⇒ a² + 2ab + b² = (a + b)²

Here,

  • a = sin²ө
  • b = cos²ө

So,

\implies(\sin^2\theta)^2+2(\sin^2\theta)(\cos^2\theta)+(\cos^2\theta)^2

\implies(\sin^2\theta+\cos^2\theta)^2

But, we know that,

⇒ sin²ө + cos²ө = 1

So,

\implies(\sin^2\theta+\cos^2\theta)^2

\implies(1)^2

\bf\implies1=RHS

HENCE PROVED!!!!

Similar questions