9 th grade maths chapter 15 (probability) full notes needed....plz don't spam!!!!!
Answers
Access Answers to Maths NCERT Class 9 Chapter 15 – Probability
Exercise 15.1 Page: 283
1. In a cricket match, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.
Solution:
According to the question,
Total number of balls = 30
Numbers of boundary = 6
Number of time batswoman didn’t hit boundary = 30 – 6 = 24
Probability she did not hit a boundary = 24/30 = 4/5
2. 1500 families with 2 children were selected randomly, and the following data were recorded:
Number of girls in a family 2 1 0
Number of families 475 814 211
Swipe left
Compute the probability of a family, chosen at random, having
(i) 2 girls (ii) 1 girl (iii) No girl
Also check whether the sum of these probabilities is 1.
Solution:
Total numbers of families = 1500
(i) Numbers of families having 2 girls = 475
Probability = Numbers of families having 2 girls/Total numbers of families
= 475/1500 = 19/60
(ii) Numbers of families having 1 girls = 814
Probability = Numbers of families having 1 girls/Total numbers of families
= 814/1500 = 407/750
(iii) Numbers of families having 2 girls = 211
Probability = Numbers of families having 0 girls/Total numbers of families
= 211/1500
Sum of the probability = (19/60)+(407/750)+(211/1500)
= (475+814+211)/1500
= 1500/1500 = 1
Yes, the sum of these probabilities is 1.
3. Refer to Example 5, Section 14.4, Chapter 14. Find the probability that a student of the class was born in August.
Solution:
chapter-15-introduction-to-probability-q3
Total numbers of students in the class = 40
Numbers of students born in August = 6
The probability that a student of the class was born in August, = 6/40 = 3/20
4. Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes:
Outcome 3 heads 2 heads 1 head No head
Frequency 23 72 77 28
Swipe left
If the three coins are simultaneously tossed again, compute the probability of 2 heads coming up.
Solution:
Number of times 2 heads come up = 72
Total number of times the coins were tossed = 200
∴, the probability of 2 heads coming up = 72/200 = 9/25
5. An organisation selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:
Monthly income
(in ₹) Vehicles per family
0 1 2 Above 2
Less than 7000 10 160 25 0
7000-10000 0 305 27 2
10000-13000 1 535 29 1
13000-16000 2 469 59 25
16000 or more 1 579 82 88
Suppose a family is chosen. Find the probability that the family chosen is
(i) earning ₹10000 – 13000 per month and owning exactly 2 vehicles.
(ii) earning ₹16000 or more per month and owning exactly 1 vehicle.
(iii) earning less than ₹7000 per month and does not own any vehicle.
(iv) earning ₹13000 – 16000 per month and owning more than 2 vehicles.
(v) owning not more than 1 vehicle.
Solution:
Total number of families = 2400
(i) Numbers of families earning ₹10000 –13000 per month and owning exactly 2 vehicles = 29
∴, the probability that the family chosen is earning ₹10000 – 13000 per month and owning exactly 2 vehicles = 29/2400
(ii) Number of families earning ₹16000 or more per month and owning exactly 1 vehicle = 579
∴, the probability that the family chosen is earning₹16000 or more per month and owning exactly 1 vehicle = 579/2400
(iii) Number of families earning less than ₹7000 per month and does not own any vehicle = 10
∴, the probability that the family chosen is earning less than ₹7000 per month and does not own any vehicle = 10/2400 = 1/240
(iv) Number of families earning ₹13000-16000 per month and owning more than 2 vehicles = 25
∴, the probability that the family chosen is earning ₹13000 – 16000 per month and owning more than 2 vehicles = 25/2400 = 1/96
(v) Number of families owning not more than 1 vehicle = 10+160+0+305+1+535+2+469+1+579
= 2062
∴, the probability that the family chosen owns not more than 1 vehicle = 2062/2400 = 1031/1200
6. Refer to Table 14.7, Chapter 14.
(i) Find the probability that a student obtained less than 20% in the mathematics test.
(ii) Find the probability that a student obtained marks 60 or above.
Solution:
Marks Number of students
0 – 20 7
20 – 30 10
30 – 40 10
40 – 50 20
50 – 60 20
60 – 70 15
70 – above 8
Total 90
Total number of students = 90
(i) Number of students who obtained less than 20% in the mathematics test = 7
∴, the probability that a student obtained less than 20% in the mathematics test = 7/90
(ii) Number of students who obtained marks 60 or above = 15+8 = 23
∴, the probability that a student obtained marks 60 or above = 23/90
DEAR I COULD HAVE GIVEN U MORE BUT THIS APP DOESN'T ALLOWS MORE THAT 5000 WORDS..
GOOD NIGHT...