Physics, asked by indrjit7563, 6 months ago

9. The acceleration due to gravity near earth's surface is
9.8m/s2 and the radius of earth is 6400km. Calculate the
mass of earth using the above information and G's value.​

Answers

Answered by prathyumavm
0

Answer:

6.63×10^-24

Explanation:

g=GM/R2

MARK ME AS BRAINLIEST

Answered by Anonymous
9

Given :

  • Radius of the Earth = 6400 km / 6.4 × 10⁶m.

  • Acceleration due to Gravity = 9.8 m/s²

  • G = 6.67 × 10¯¹¹ N m²kg¯²

To Find :-

The Mass of the Earth.

Solution :-

Let the mass of earth be m kg.

We know the formula for acceleration due to gravity on an planet !! i.e,

\underline{\boxed{\bf{g = \dfrac{GM}{r^{2}}}}}

Where :-

  • g = Acceleration due to gravity
  • M = Mass of the planet
  • r = Distance

Now using the formula and substituting the values in it, we get :-

:\implies \bf{9.8 = \dfrac{6.67 \times 10^{-11} \times M}{(6.4 \times 10^{6})^{2}}} \\ \\ \\

:\implies \bf{9.8 = \dfrac{6.67 \times \times 10^{-11} \times M}{(6.4 \times 10^{6})(6.4 \times 10^{6})}} \\ \\ \\

:\implies \bf{9.8 = \dfrac{6.67 \times 10^{-11} \times M}{6.4 \times 6.4 \times 10^{12}}} \\ \\ \\

:\implies \bf{9.8 = \dfrac{6.67 \times 10^{-11} \times M}{40.96 \times 10^{12}}} \\ \\ \\

Now , multiplying both the sides by (40.96 × 10¹²) , we get :-

\\

:\implies \bf{9.8 \times 40.96 \times 10^{12} = \dfrac{6.67 \times 10^{-11} \times M}{40.96 \times 10^{12}} \times 40.96 \times 10^{12}} \\ \\ \\

:\implies \bf{401.4 \times 10^{12} = 6.67 \times 10^{-11} \times M} \\ \\ \\

:\implies \bf{\dfrac{401.4 \times 10^{12}}{6.67} = 10^{-11} \times M} \\ \\ \\

:\implies \bf{60(approx.) \times 10^{12} = 10^{-11} \times M} \\ \\ \\

:\implies \bf{\dfrac{60 \times 10^{12}}{10^{-11}} = M} \\ \\ \\

:\implies \bf{60 \times 10^{12 + 11} = M} \\ \\ \\

:\implies \bf{60 \times 10^{23} = M} \\ \\ \\

:\implies \bf{6 \times 10^{24} = M} \\ \\ \\

\therefore \bf{M = 6 \times 10^{24}} \\ \\ \\

Hence, the mass of earth is 6 × 10²⁴ kg.

Similar questions