Math, asked by siluas2, 9 months ago

9. The angle of elevation of the top of a building from the foot of the tower is 30° and the
angle of elevation of the top of the tower from the foot of the building is 60°. If the tower
is 50 m high, find the height of the building.
nolas
Fond​

Answers

Answered by amansharma264
28

EXPLANATION.

 \sf :  \implies \: \: angle \: of \: elevation \: from \: top \: of \: building \: from \: foot \: of \: tower \:  = 30 \degree \\  \\  \sf :  \implies \: \: angle \: of \: elevation \: of \: top \: of \: tower \: from \: foot \: of \: building \:  = 60 \degree \\  \\ \sf :  \implies \: \: height \: of \: tower \:  = 50 \: m

 \sf :  \implies \: \: in \: right \: angled \: triangle \:  =   \triangle \: DBC \\  \\ \: \sf :  \implies \:  \tan( \theta)  =  \frac{perpendicular}{base} \\  \\ \sf :  \implies \:  \tan(60 \degree) =  \frac{dc}{bc}  \\  \\   \sf :  \implies \:  \sqrt{3}  =  \frac{50}{bc}  \\  \\ \sf :  \implies \: bc \:  =  \frac{50}{ \sqrt{3} }

\sf :  \implies \: in \: right \: angled \: triangle \:  =  \triangle \: ABC \\  \\ \: \sf :  \implies \:  \tan( \theta) =  \frac{perpendicular}{base} \\  \\   \sf :  \implies \:  \tan(30 \degree) =  \frac{ab}{bc}  \\  \\  \sf :  \implies \:  \frac{1}{ \sqrt{3} }  = \frac{ab}{ \frac{50}{ \sqrt{3} } }

\sf :  \implies \:  \dfrac{1}{ \sqrt{3} }  =  \dfrac{ab}{50} \times  \sqrt{3}  \\  \\  \sf :  \implies \: ab \:  =  \frac{50}{3} m

\sf :  \implies \:  \green{{ \underline{height \: of \: building \:  =  \frac{50}{3}m }}}

Attachments:

Anonymous: Nice ♥️
Answered by Anonymous
5

Given :

  • The angle of elevation of the top of a building from the foot of the tower is 30°.

  • The angle of elevation of the top of tower from the foot of the building is 60°.

  • Height of the tower is 50 m.

  • Let the height of the building be h.

Step-by-step explanation:

\sf In  \: \Delta BDC \\

:\implies \sf tan  \: \theta = \dfrac{Perpendicular}{Base} \\  \\

:\implies \sf tan  \: 60^{\circ}  = \dfrac{CD}{BD} \\  \\

:\implies \sf  \sqrt{3}   = \dfrac{50}{BD} \\  \\

:\implies \sf BD =  \dfrac{50}{ \sqrt{3} }  \: m\\  \\

___________________

\sf In \:  \Delta ABD, \\

\dashrightarrow\:\: \sf tan \: 30 ^{\circ}  =   \dfrac{AB}{BD}  \\  \\

\dashrightarrow\:\: \sf  \dfrac{1}{ \sqrt{3} } = \dfrac{AB}{BD} \\  \\

\dashrightarrow\:\: \sf  \dfrac{1}{ \sqrt{3} } = \dfrac{h}{ \dfrac{50}{ \sqrt{3} } } \\  \\

\dashrightarrow\:\: \sf  h = \dfrac{ 50 }{ \sqrt{3}  \times  \sqrt{3} } \\  \\

\dashrightarrow\:\:  \underline{ \boxed{\sf  Height= \dfrac{50}{3} \: m }}\\  \\

\therefore\:\underline{\textsf{Height of the building is \textbf{50/3 meter}}}. \\

__________________

\bigstar\:\sf Trigonometric\:Values :\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D$\hat{e}$fined\end{tabular}}

Attachments:
Similar questions