Math, asked by iamSarthak, 11 months ago

9.
The ratio in which the line segment joining A(3,-5) and B(5, 4) is divided by x-axis is :

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\textsf{A(3,-5) and B(5,4)}

\underline{\textbf{To find:}}

\textsf{The ratio in which line segment joining A(3,-5) and B(5,4)}

\textsf{is divided by x-axis}

\underline{\textbf{Solution:}}

\underline{\textbf{Section formula:}}

\boxed{\begin{minipage}{9cm}$\\The\;co\,ordintes\;of\;the\;point\;which\;divides\;the\;line\\\\segment\;joining\;(x_1,y_1)\;and\;(x_2,y_2)\;internally\;in\\\\the\;ratio\;m:n\;are\;\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)\\$\end{minipage}}

\textsf{Let the x-axis divides the line segment joining A(3,-5) and B(5,4) be m:n}

\textsf{By section formula}

\mathsf{\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)}

\mathsf{\left(\dfrac{m(5)+n(3)}{m+n},\dfrac{m(4)+n(-5)}{m+n}\right)}

\mathsf{\left(\dfrac{5m+3n}{m+n},\dfrac{4m-5n}{m+n}\right)}

\textsf{Since it lies on x-axis, its y co-ordinate is zero}

\mathsf{\dfrac{4m-5n}{m+n}=0}

\mathsf{4m-5n=0}

\mathsf{4m=5n}

\implies\mathsf{\dfrac{m}{n}=\dfrac{5}{4}}

\implies\boxed{\mathsf{m:n=5:4}}

Similar questions