Math, asked by soumyasoumya80449, 1 day ago

9. The rational number between -1/5 and -215 is
a 4
b-1/4
C-3/10
d-7/25​

Answers

Answered by yogeshatchaya
0

Answer:

Given :

Dimensions of floor = 8 m × 7 m

Height of the room = 4 m

\begin{gathered} \\ \rule{200pt}{3pt}\end{gathered}

To Find :

Find the Area of four walls .

\begin{gathered} \\ \rule{200pt}{3pt}\end{gathered}

Solution :

~ Formula Used :

Total Surface Area :

{\purple{\dashrightarrow}} \: \: {\underline{\overline{\boxed{\red{\pmb{\sf{ LSA{\small_{(Cuboid)}} = 2(lb + bh + hl) }}}}}}}⇢

LSA

(Cuboid)

=2(lb+bh+hl)

LSA

(Cuboid)

=2(lb+bh+hl)

Area :

{\purple{\dashrightarrow}} \: \: {\underline{\overline{\boxed{\red{\pmb{\sf{ Area{\small_{(Rectangle)}} = L \times B }}}}}}}⇢

Area

(Rectangle)

=L×B

Area

(Rectangle)

=L×B

Where :

➳ TSA = Total Surface Area

➳ L = Length

➳ B = Breadth

➳ H = Height

➳ A = Area

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}}\end{gathered}

~ Calculating the TSA of Room :

\begin{gathered} {\longmapsto{\qquad{\sf{ TSA{\small_{(Room)}} = 2(lb + bh + hl) }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ TSA{\small_{(Room)}} = 2[( 8 \times 7) + (7 \times 4) + (4 \times 8)] }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ TSA{\small_{(Room)}} = 2( 56 + 28 + 32) }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ TSA{\small_{(Room)}} = 2 \times 116 }}}} \\ \\ \ {\qquad{\textsf{ Lateral Surface Area of the Room = {\pink{\sf{ 232 \: m² }}}}}}\end{gathered}

⟼TSA

(Room)

=2(lb+bh+hl)

⟼TSA

(Room)

=2[(8×7)+(7×4)+(4×8)]

⟼TSA

(Room)

=2(56+28+32)

⟼TSA

(Room)

=2×116

Lateral Surface Area of the Room = 232 m²

Similar questions