Math, asked by krishnaveniakula6, 5 months ago


9) The sum of the first 51 terms of the A.P whose 2nd
term is 2 and 4th term is 8, is

Answers

Answered by Ataraxia
20

Solution :-

Let :-

First term = a

Common difference = d

We know :-

\bf a_n = a+ (n-1)d

\bullet \sf \ 2^{nd} \ term = 2

\longrightarrow \sf a+(2-1)d = 2 \\\\\longrightarrow a+d = 2  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  ...........................(1)

\bullet \sf \ 4^{th} \ term = 8

\longrightarrow \sf a+(4-1)d = 8 \\\\\longrightarrow a+3d = 8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  ...........................(2)

Equation (2) - Equation (1) :-

\longrightarrow \sf 2d = 6\\\\\longrightarrow \bf d = 3

Substitute the value of d in eq (1) :-

\longrightarrow \sf a+3 = 2 \\\\\longrightarrow \bf a = -1

We know :-

\bf Sum \ of \ first \ n \ terms = \dfrac{n}{2} \times [ \ 2a+(n-1)d \ ]

Sum of first 51 terms :-

\longrightarrow \sf \dfrac{51}{2} \times [ \ 2 \times -1 + (51-1) \times 3 \ ]  \\\\\longrightarrow \dfrac{51}{2} \times [ \ -2+(50 \times 3 ) \ ]  \\\\\longrightarrow \dfrac{51}{2} \times [ -2+150 \ ] \\\\\longrightarrow \dfrac{51}{2} \times 148 \\\\\longrightarrow\bf  3774

Answered by Anonymous
119

Given:-

  • 2nd term of the A.P is 2
  • 4th term of the A.P is 8

To Find:-

  • The sum of the first 51 terms of the A.P

Solution:-

First term:- a

common difference:- d

We know,

\tt a_n = a+ (n-1)d

second term:-

:\implies\tt a_2 = a+ (2-1)d

:\implies\tt a_2 = a+d=2\;\;\;\;\;\;\;\;\;\;\;\;\bigg\lgroup\bf eq\;(1)\bigg\rgroup

Fourth term:-

:\implies\tt a_4 = a+ (4-1)d

:\implies\tt a_4 = a+3d=8\;\;\;\;\;\;\;\;\;\;\;\;\bigg\lgroup\bf eq\;(2)\bigg\rgroup

On subtracting equation(1) from (2):-

:\implies\tt 2d=6

:\implies\tt d= \dfrac{2}{6}

Substituting the value of d in equation(1):-

:\implies\tt a+3=2

:\implies\tt a=(-1)

Sum of first 51 terms of the A.P:-

:\implies\sf S_n = \dfrac{n}{2}\bigg(2a + (n - 1)d\bigg)

:\implies\sf S_n =\dfrac{51}{2}\times\bigg(2 \times -1 + (51-1) \times 3\bigg)

\begin{lgathered}:\implies\tt\dfrac{51}{2} \times [ \ 2 \times -1 + (51-1) \times 3 \ ] \\\\:\implies \tt\dfrac{51}{2} \times [ \ -2+(50 \times 3 ) \ ] \\\\:\implies\tt \dfrac{51}{2} \times [ -2+150 \ ] \\\\:\implies\tt \dfrac{51}{2} \times 148 \\\\:\implies\tt 3774\end{lgathered}

Similar questions