Math, asked by abulhusssan, 5 months ago

9. The volume of a cylinder of height 8 cm is 1232 cm°. Find its curved surface area and the
total surface area.​

Answers

Answered by sethrollins13
66

Given :

  • Volume of Cylinder is 1232 cm³ .
  • Height of Cylinder is 8 cm .

To Find :

  • Curved Surface Area and Total Surface Area of Cylinder .

Solution :

Firstly we will Find Radius :

Using Formula :

\longmapsto\tt\boxed{Volume\:of\:Cylinder=\pi{{r}^{2}h}}

Putting Values :

\longmapsto\tt{1232=\dfrac{22}{7}\times{{r}^{2}}\times{8}}

\longmapsto\tt{1232\times{7}=176\:{r}^{2}}

\longmapsto\tt{\cancel\dfrac{1232}{176}={r}^{2}}

\longmapsto\tt{\sqrt{49}=r}

\longmapsto\tt\bf{7\:cm=r}

_______________________

For Curved Surface Area :

Using Formula :

\longmapsto\tt\boxed{C.S.A\:of\:Cylinder=2\pi{rh}}

Putting Values :

\longmapsto\tt{2\times\dfrac{22}{{\not{7}}}\times{{\not{7}}}\times{8}}

\longmapsto\tt{44\times{8}}

\longmapsto\tt\bf{352\:{cm}^{2}}

_______________________

For Total Surface Area :

Using Formula :

\longmapsto\tt\boxed{T.S.A\:of\:Cylinder=2\pi{r(r+h)}}

Putting Values :

\longmapsto\tt{2\times\dfrac{22}{{\not{7}}}\times{{\not{7}}}\:(7+8)}

\longmapsto\tt{44\times{15}}

\longmapsto\tt\bf{660\:{cm}^{2}}

Answered by Mister360
5

Given\begin{cases}In\:a\:Cylinder \\ Volume=1232 {cm}^{2} \\ Height=8cm \end {cases}

To find:-

Curved\:surface\:area{}_{(CSA)}

Total\:Surface\:area {}_{(TSA)}

Solution:-

Let radius=r

as we know that in a Cylinder

{\boxed{Volume={\pi}r {}^{2}h}}

  • Substitute the values

{:}\longrightarrow {\dfrac {22}{7}}×{r}^{2}×8=1232

{:}\longrightarrow 176{r}^{2}=1232

{:}\longrightarrow {r}^{2}={\dfrac {1232}{176}}

{:}\longrightarrow{r }^{2}=49

{:}\longrightarrowr={\sqrt{49}}

{:}\longrightarrowr=7cm

CSA:-

As we know that

{\boxed{CSA=2{\pi}rh}}

  • Substitute the values

{:}\longrightarrowCSA=2×{\dfrac{22}{7}}×7×8

{:}\longrightarrowCSA=44×8

\therefore{\boxed  {CSA=352cm {}^{2}}}

TSA:-

as we know that

{\boxed{TSA=2 {\pi}r (h+r)}}

  • Substitute the values

{:}\longrightarrowTSA=2×{\dfrac{22}{7}}×7 (8+7)

{:}\longrightarrowTSA=2×22×15

\therefore{\boxed{TSA=660cm {}^{2}}}

Attachments:
Similar questions