Physics, asked by pinkysharma6345, 9 months ago

9.
Two electrons are fixed 2 cm apart. Another electron is shot from infinity and stops midway between
the two. What is the initial speed?​

Answers

Answered by saounksh
1

ᴀɴsᴡᴇʀ

  • \boxed{\red{v_0 = \sqrt{\frac{8ke^2}{m_er}}}}

  • \boxed{\blue{v_0 = 318.24\:m/s}}

ɢɪᴠᴇɴ

  • Two electrons are fixed at  r = 2 cm apart.

  • Another electron is shot from infinity.

  • The electron stops midway between the two fixed electrons

ᴛᴏ ғɪɴᴅ

  • Initial Speed of the electron shot.

ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴ

Let

  •  v_0 be the initial speed of electron.

  •  m_e be mass of electron.

  •  e be charge of an electron.

Assume that the electron is moving at non-relativistic speed.

Expression of Initial Velocity

By conservation of energy,

\implies (K. E.)_i+(P. E.)_i

 \:\:\:\:\:\:= (K. E.)_f + (P. E.)_f

\implies \frac{1}{2}m_e{v_0}^2 + 0

\:\:\:\:\:\: = 0+ \frac{k(e)(e)}{(\frac{r}{2})} +\frac{k(e)(e)}{(\frac{r}{2})}

\implies \frac{1}{2}m_e{v_0}^2 = \frac{2ke^2}{r} +\frac{2ke^2}{r}

\implies \frac{1}{2}m_e{v_0}^2 = \frac{4ke^2}{r}

\implies m_e{v_0}^2 = \frac{8ke^2}{r}

\implies {v_0}^2 = \frac{8ke^2}{m_er}

\implies v_0 = \sqrt{\frac{8ke^2}{m_er}}

Numerical Value

Here,

  •  k\:\: = \:\:9\times 10^9\:Nm^2/C^2
  •  e\:\:\:= - 1.6\times 10^{-19}\:C
  •  m_e = \:\:9.1\times 10^{-31}\:Kg
  •  r \:\:\:=\:\: 2 \times 10^{-2}\:m

Putting these values in the expression,

\implies v_0 = \sqrt{8\frac{(9\times 10^9)\times (- 1.6\times 10^{-19})^2}{(9.1\times 10^{-31})\times (2 \times 10^{-2}) }}

\implies v_0 = \sqrt{\frac{4\times 9\times 2.56}{9.1}\times 10^{9-38+31+2}}

\implies v_0 = \sqrt{10.1275\times 10^{4}}

\implies v_0 = 3.1824\times 10^{2}

\implies v_0 = 318.24\: m/s

Similar questions