Math, asked by pipul32, 6 months ago

9. Which terın of the AP 18,23,28,33.is 982
a. 15th
b. 16th
c. 17th
d. 18th​

Answers

Answered by BrainlyIAS
30

Given :

An AP 18 , 23 , 28 , 33 , .....

Options :

a. 15th

b. 16th

c. 17th

d. 18th

Solution :

★══════════════════════★

nth term of an AP is given by ,

\pink{\bigstar}\ \; \sf a_n=a+(n-1)d

Where ,

  • a denotes first term
  • n denotes nth term value
  • d denotes common difference

★══════════════════════★

Here ,

a = 18

d = 23 - 18 = 5

n = ?

aₙ = 98

➠ 98 = 18 + (n - 1)5

➠ 98 = 18 + 5n - 5

➠ 5n + 18 = 98 + 5

➠ 5n + 18 = 103

➠ 5n = 103 - 18

➠ 5n = 85

➠ n = 17

17th term of the given AP is 98

Option C

Answered by Anonymous
15

 \large\pink \dag \bf \: According  \: to  \: question

An AP 18 , 23 , 28 , 33 , .....

 \bf \: so

a = 18

d = 23 - 18 = 5

n = ?

aₙ = 98

 \bf★   \pink FORMULA  \:   \pink  USED

 \implies\ \; \sf a_n=a+(n-1)d

 \bf \: put  \: the  \: given \:  value  \: in  \: this  \: formula </h3><h3>

 \bf \:  98 = 18 + (n - 1)5 \\ </p><p></p><p> \bf \: 98 = 18 + 5n - 5 \\ </p><p></p><p> \bf \:  5n + 18 = 98 + 5 \\  </p><p></p><p> \bf 5n + 18 = 103 \\ </p><p></p><p> \bf \: 5n = 103 - 18 \\ </p><p></p><p> \bf 5n = 85 \\ </p><p></p><p> \bf n = 17</p><p></p><p>

Option C

Similar questions