Math, asked by Anonymous, 5 months ago

9. Without actually dividing find which of the following are terminating decimals. 3/25, 11/18, 13/20 & 41/42​

Answers

Answered by aarushchoudhary59
3

Step-by-step explanation:

So 3/25 is terminating. 11/18 is non terminating. 13/20 is terminating. 41/42 is non terminating.

Answered by prasannaaddagiri234
7

Step-by-step explanation:

(i). \frac{3}{25}  \\  \frac{3}{25} \\   =  \frac{3}{5 \times 5}    \\ =  \frac{3}{ {5}^{2} }  \\  =  \frac{3}{ {5}^{2} }  \times   \frac{ {2}^{2} }{ {2}^{2} }   \\ =  \frac{3 \times 4}{ {10}^{2} }  \\  =  \frac{12}{100}   \\  = 0.12 \\  \: therefore \:  \frac{3}{25}  \: is \: a \: terminating \: decimal

(iv). \frac{41}{42}  \\  \frac{41}{42}  =  \frac{41}{2 \times 3 \times 7}  \\ this \: is \: not \: a \: terminating \: decimal \\ because \: this \: is \: not \: in \: the \: form \: of \:  {2}^{m}  \times  {5}^{m}  \\ therefore \:  \frac{41}{42}  \: is \: non \: terminating \: decimal

(ii). \frac{11}{18}  \\  \frac{11}{18}  =  \frac{11}{3 \times 3 \times 2}  \\  \: this \: is \: not \: a \: terminating \: decimal \:  \\ because \: this \: is \: not \: in \: the \: form \: of \:  {2}^{m}  \times  {5}^{m}  \\ therefore \:  \frac{11}{18}  \: is \: non \: terminating \: decimal

(iii). \frac{13}{20}  \\  \frac{13}{20}  =   \frac{13}{2 \times 2 \times 5}  \\  =  \frac{13}{ {2}^{2} \times  {5}^{1}  }   \\ =   \frac{13}{ {2}^{2}  \times  {5}^{1} }  \times  \frac{ {5}^{1} }{ {5}^{1} }  \\  =  \frac{13 \times 5}{ {2}^{2}  \times  {5}^{2} }  \\  =  \frac{65}{ {10}^{2} }  \\  =  \frac{65}{100} \\   = 0.65 \\  \: therefore \:  \frac{13}{20}  \: is \: a \: terminating \: decimal

Similar questions