Math, asked by RiyaSahal, 5 months ago

9^(x+1) =27/(3^x). solve for x​

Answers

Answered by Anonymous
3

Solution:-

 \sf \to \:  {9}^{x + 1} =  \dfrac{27}{ {3}^{x} }

 \sf \to \: 3 {}^{2(x + 1)}  \times  {3}^{x}  = 27

 \sf \to \:  {3}^{2x + 2}  \times  {3}^{x}  = 3 {}^{3}

 \sf \to \:  {3}^{2x + 2 + x}  =  {3}^{3}

 \sf \to \:  {3}^{3x + 2}  =  {3}^{3}

 \sf \to \: 3x + 2 = 3

 \sf \to \: 3x = 3 - 2

 \sf \to \: 3x = 1

 \sf \to \: x =  \dfrac{1}{3}

Some exponential law

 \sf \to \:  {a}^{m}  \times a {}^{n}  =  {a}^{m + n}

 \sf \to \:  {a}^{0}  = 1

 \sf \to \:  {a}^{ - 1}  =  \dfrac{1}{a}

 \sf \to \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \sf \to \: ( {a}^{m} ) {}^{n}  =  {a}^{mn}

Answered by mathdude500
1
3^(2x+2) = 3^(3-x)
So, 2x + 2 = 3 - x
3x = 1
x = 1/3
Similar questions