9 X + 7 upon 2 minus x minus x minus 2 upon 7 is equal to 36
Answers
Let's solve your equation step-by-step.
Step 1: Simplify both sides of the equation.
(Distribute the Negative Sign)
(Distribute)
(Combine Like Terms)
Step 2: Subtract from both sides.
Step 3: Multiply both sides by .
Verification if x = 9
Answer:
9x+7
−[x−(
7
x−2
)]=36
Step 1: Simplify both sides of the equation.
\sf \frac{9x+7}{2}-[x-(\frac{x-2}{7})]=36
2
9x+7
−[x−(
7
x−2
)]=36
(Distribute the Negative Sign)
\sf \frac{9x+7}{2}+-1[x-(\frac{x-2}{7})]=36
2
9x+7
+−1[x−(
7
x−2
)]=36
\sf \frac{9x+7}{2} +-1x+-1(\frac{1}{7}x+\frac{2}{7})=36
2
9x+7
+−1x+−1(
7
1
x+
7
2
)=36
\sf \frac{9x+7}{2}+-x+\frac{1}{7}x+\frac{-2}{7}=36
2
9x+7
+−x+
7
1
x+
7
−2
=36
(Distribute)
\sf \frac{9}{2}x+\frac{7}{2}+-x+\frac{1}{7}x+\frac{-2}{7}=36
2
9
x+
2
7
+−x+
7
1
x+
7
−2
=36
(Combine Like Terms)
\sf (\frac{9}{2}x+-x+\frac{1}{7}x)+(\frac{7}{2}+\frac{-2}{7})=36(
2
9
x+−x+
7
1
x)+(
2
7
+
7
−2
)=36
\sf \frac{51}{14}x+\frac{45}{14}=36
14
51
x+
14
45
=36
Step 2: Subtract \sf \frac{45}{14}
14
45
from both sides.
\sf \frac{51}{14}x+\frac{45}{14}-\frac{45}{14} =36-\frac{45}{14}
14
51
x+
14
45
−
14
45
=36−
14
45
\sf \frac{51}{14}x=\frac{459}{14}
14
51
x=
14
459
Step 3: Multiply both sides by \sf \frac{14}{51}
51
14
.
\sf \frac{14}{51}\times \frac{51}{14}x=\frac{14}{51}\times \frac{459}{14}
51
14
×
14
51
x=
51
14
×
14
459
\sf x=9x=9
$$\rule{300}{1}$$
Verification if x = 9
$$\sf \frac{(9\times9) +7}{2}-[9-(\frac{9-2}{7})]$$
$$\sf \frac{81 +7}{2}-[9-(\frac{9-2}{7})]$$
$$\sf \frac{88}{2}-[9-(\frac{9-2}{7})]$$
$$\sf 44-[9-(\frac{9-2}{7})]$$
$$\sf 44-[9-(\frac{7}{7})]$$
$$\sf 44-[9-1]$$
$$\sf 44-8$$
$$\sf 36$$
$$\bf\therefore\ x=9\ in \ the \ equation\ \rightarrow \frac{9x+7}{2}-[x-(\frac{x-2}{7})]=36$$