Math, asked by pateltruptiben21, 7 months ago

9 X + 7 upon 2 minus x minus x minus 2 upon 7 is equal to 36​

Attachments:

Answers

Answered by spacelover123
3

Let's solve your equation step-by-step.

\sf \frac{9x+7}{2}-[x-(\frac{x-2}{7})]=36

Step 1: Simplify both sides of the equation.

\sf \frac{9x+7}{2}-[x-(\frac{x-2}{7})]=36

(Distribute the Negative Sign)

\sf \frac{9x+7}{2}+-1[x-(\frac{x-2}{7})]=36

\sf \frac{9x+7}{2} +-1x+-1(\frac{1}{7}x+\frac{2}{7})=36

\sf \frac{9x+7}{2}+-x+\frac{1}{7}x+\frac{-2}{7}=36

(Distribute)

\sf \frac{9}{2}x+\frac{7}{2}+-x+\frac{1}{7}x+\frac{-2}{7}=36

(Combine Like Terms)

\sf (\frac{9}{2}x+-x+\frac{1}{7}x)+(\frac{7}{2}+\frac{-2}{7})=36

\sf   \frac{51}{14}x+\frac{45}{14}=36

Step 2: Subtract \sf \frac{45}{14} from both sides.

\sf   \frac{51}{14}x+\frac{45}{14}-\frac{45}{14} =36-\frac{45}{14}

\sf \frac{51}{14}x=\frac{459}{14}

Step 3: Multiply both sides by \sf \frac{14}{51}.

\sf \frac{14}{51}\times   \frac{51}{14}x=\frac{14}{51}\times  \frac{459}{14}

\sf x=9

\rule{300}{1}

Verification if x = 9

\sf \frac{(9\times9) +7}{2}-[9-(\frac{9-2}{7})]

\sf \frac{81 +7}{2}-[9-(\frac{9-2}{7})]

\sf \frac{88}{2}-[9-(\frac{9-2}{7})]

\sf 44-[9-(\frac{9-2}{7})]

\sf 44-[9-(\frac{7}{7})]

\sf 44-[9-1]

\sf 44-8

\sf 36

\bf\therefore\  x=9\  in \ the \ equation\ \rightarrow \frac{9x+7}{2}-[x-(\frac{x-2}{7})]=36

Answered by TheJagirdaR
3

Answer:

9x+7

−[x−(

7

x−2

)]=36

Step 1: Simplify both sides of the equation.

\sf \frac{9x+7}{2}-[x-(\frac{x-2}{7})]=36

2

9x+7

−[x−(

7

x−2

)]=36

(Distribute the Negative Sign)

\sf \frac{9x+7}{2}+-1[x-(\frac{x-2}{7})]=36

2

9x+7

+−1[x−(

7

x−2

)]=36

\sf \frac{9x+7}{2} +-1x+-1(\frac{1}{7}x+\frac{2}{7})=36

2

9x+7

+−1x+−1(

7

1

x+

7

2

)=36

\sf \frac{9x+7}{2}+-x+\frac{1}{7}x+\frac{-2}{7}=36

2

9x+7

+−x+

7

1

x+

7

−2

=36

(Distribute)

\sf \frac{9}{2}x+\frac{7}{2}+-x+\frac{1}{7}x+\frac{-2}{7}=36

2

9

x+

2

7

+−x+

7

1

x+

7

−2

=36

(Combine Like Terms)

\sf (\frac{9}{2}x+-x+\frac{1}{7}x)+(\frac{7}{2}+\frac{-2}{7})=36(

2

9

x+−x+

7

1

x)+(

2

7

+

7

−2

)=36

\sf \frac{51}{14}x+\frac{45}{14}=36

14

51

x+

14

45

=36

Step 2: Subtract \sf \frac{45}{14}

14

45

from both sides.

\sf \frac{51}{14}x+\frac{45}{14}-\frac{45}{14} =36-\frac{45}{14}

14

51

x+

14

45

14

45

=36−

14

45

\sf \frac{51}{14}x=\frac{459}{14}

14

51

x=

14

459

Step 3: Multiply both sides by \sf \frac{14}{51}

51

14

.

\sf \frac{14}{51}\times \frac{51}{14}x=\frac{14}{51}\times \frac{459}{14}

51

14

×

14

51

x=

51

14

×

14

459

\sf x=9x=9

$$\rule{300}{1}$$

Verification if x = 9

$$\sf \frac{(9\times9) +7}{2}-[9-(\frac{9-2}{7})]$$

$$\sf \frac{81 +7}{2}-[9-(\frac{9-2}{7})]$$

$$\sf \frac{88}{2}-[9-(\frac{9-2}{7})]$$

$$\sf 44-[9-(\frac{9-2}{7})]$$

$$\sf 44-[9-(\frac{7}{7})]$$

$$\sf 44-[9-1]$$

$$\sf 44-8$$

$$\sf 36$$

$$\bf\therefore\ x=9\ in \ the \ equation\ \rightarrow \frac{9x+7}{2}-[x-(\frac{x-2}{7})]=36$$

Similar questions
Biology, 11 months ago