Math, asked by avikkumar2004p503q0, 9 months ago

9 x square - 15 X + 6 = 2 0 completing the square method​

Answers

Answered by shwetasamaira
0

Answer:

9square -15x +16 =20

9square -15x = 20-16

18 -15x = 4

-15x = 4-18

-15x = -14

x = -14/-15

x=14/15

hence this is your answere

Answered by amankumaraman11
0

 \bf {9x}^{2}  - 15x + 6 = 20 \\  \\ \to \tt {9x}^{2}  - 15x + 6 - 20 = 0 \\ \to \tt {9x}^{2}  - 15x - 14  = 0\\  \\ \to \tt {(3x)}^{2}  - 2(3x) \bigg ( \frac{15}{6}  \bigg) -  {\bigg ( \frac{15}{6} \bigg)}^{2}  + {\bigg ( \frac{15}{6} \bigg)}^{2}  - 14 = 0 \\  \\\to \tt  {\bigg (3x -  \frac{15}{6} \bigg)}^{2}  -  {\bigg ( \frac{15}{6} \bigg)}^{2}  - 14=  0 \\  \\\to \tt {\bigg (3x -  \frac{15}{6} \bigg)}^{2}  -  \frac{225}{36}  - 14 = 0 \\  \\\to \tt {\bigg (3x -  \frac{15}{6} \bigg)}^{2}  - {\bigg ( \frac{225}{36}  + 14\bigg)}^{}  = 0 \\  \\\to \tt {\bigg (3x -  \frac{15}{6}  \bigg)}^{2}  - {\bigg ( \frac{225  + 504}{36} \bigg)}^{}  = 0 \\  \\\to \tt {\bigg (3x -  \frac{15}{6} \bigg)}^{2}  -  \frac{726}{36}  = 0 \\  \\ \to \tt{\bigg (3x -  \frac{15}{6} \bigg)}^{2}  -  {\bigg ( \frac{ \sqrt{726} }{ \sqrt{36} } \bigg)}^{2}  = 0 \\  \\ \to \tt{\bigg (3x -  \frac{15}{6} \bigg)}^{2}  -  \bigg ( \frac{26 \sqrt{50} }{6} \bigg)^{2}  = 0 \\  \\\to \tt{\bigg (3x -  \frac{15}{6}  -   \frac{26 \sqrt{50} }{6} \bigg)}^{}  {\bigg (3x -  \frac{15}{6} +  \frac{26 \sqrt{50} }{6}  \bigg)}^{}  = 0  \\  \\\to \tt \bigg \{ \frac{18x - 15 - 26 \sqrt{50} }{6} \bigg \} \bigg \{ \frac{18x - 15 + 26 \sqrt{50} }{6} \bigg \}  = 0 \\  \\\to \tt  \frac{1}{6}  \bigg \{18x - 15 - 26 \sqrt{50} \bigg \} \bigg \{18x - 15 + 26 \sqrt{50} \bigg \}  = 0  \\  \\ \to \tt\bigg \{18x - 15 - 26 \sqrt{50} \bigg \} \bigg \{18x - 15 + 26 \sqrt{50} \bigg \}  =  \frac{0}{ \frac{1}{6} }   \\  \\ \to \sf\bigg \{18x - 15 - 26 \sqrt{50} \bigg \} \bigg \{18x - 15 + 26 \sqrt{50} \bigg \}  = 0

Thus,

  • Factors of 9x² - 15x + 6 = 20 are (18x-15 -26√50) and (18x-15+26√50)
Similar questions