9 X square + 16 Y squared equals to 60 and 3 X + 4 Y = to 6 then find the value of x y
Answers
Answered by
1
Hey
Given :-
♦ 9x² + 16y² = 60 –––( i )
♦ 3x + 4y = 6 –––( ii )
To find :- Value of x any y .
Now ,
3x + 4y = 6
=> 3x = 6 - 4y
=> x = 6 - 4y / 3
Now putting value of x in eq( i )
we get ,
9x² + 16y² = 60
=> 9 ( 6 - 4y / 3 ) ² + 16y² = 60
=> 9 ( 6 - 4y² ) / 9 + 16 y² = 60
=> 36 + 16y² - 48y + 16y² = 60
=> 32y² - 48y - 24 = 0
=> 4y² - 6y - 3 = 0
D = ( - 6 ) ² - 4 ( 4 ) ( -3 )
= 36 + 48
= 84
= 2√21
So ,
y = 6 + 2√21 / 2
y = 2 ( 3 + √21 ) / 2
y = 3 + √21
And ,
y = 3 - √21 .
So ,
x = 6 - 4y / 3
= 6 - 4 ( 3 + √21 ) / 3
= 6 - 12 - 4√21 / 3
= -6 -4√21 / 3
= -2 ( 3 + 2√21 ) / 3 .
Or ,
x = 6 - 4 ( 3 - √21 ) / 3
= 6 - 12 + 4√21 / 3
= 4√21 - 6 / 3
= 2 ( 2√21 - 3 ) / 3 .
thanks :)
Given :-
♦ 9x² + 16y² = 60 –––( i )
♦ 3x + 4y = 6 –––( ii )
To find :- Value of x any y .
Now ,
3x + 4y = 6
=> 3x = 6 - 4y
=> x = 6 - 4y / 3
Now putting value of x in eq( i )
we get ,
9x² + 16y² = 60
=> 9 ( 6 - 4y / 3 ) ² + 16y² = 60
=> 9 ( 6 - 4y² ) / 9 + 16 y² = 60
=> 36 + 16y² - 48y + 16y² = 60
=> 32y² - 48y - 24 = 0
=> 4y² - 6y - 3 = 0
D = ( - 6 ) ² - 4 ( 4 ) ( -3 )
= 36 + 48
= 84
= 2√21
So ,
y = 6 + 2√21 / 2
y = 2 ( 3 + √21 ) / 2
y = 3 + √21
And ,
y = 3 - √21 .
So ,
x = 6 - 4y / 3
= 6 - 4 ( 3 + √21 ) / 3
= 6 - 12 - 4√21 / 3
= -6 -4√21 / 3
= -2 ( 3 + 2√21 ) / 3 .
Or ,
x = 6 - 4 ( 3 - √21 ) / 3
= 6 - 12 + 4√21 / 3
= 4√21 - 6 / 3
= 2 ( 2√21 - 3 ) / 3 .
thanks :)
Similar questions