Math, asked by LackW, 1 year ago

92-1 = 3 x √3(2x+1) has the solution​

Attachments:

Answers

Answered by Anonymous
2

\underline{\large{\sf Answer:}}

\sf9^{(x-1)}=3\times\sqrt{3^{(2x+1)}}

\sf\:Squaring\:on\:both\:the \:sides

\sf(9^{(x-1)})^2=(3\times\sqrt{3^{(2x+1)}})^2

\sf\:Apply\:the\:Rule\:(a^m)^n =a^{(m\times n)}\:on\:LHS

\implies\sf(9^{(2x-2)})=(3)^2\times3^{(2x+1)}

\sf\:Apply\:the\:Rule\:a^m\times b^n=a^{(m+n)}\:on\:RHS

\implies\sf(3^2)^{(2x-2)}=3^{(2x+1+2)}

\implies \sf (3^{(4x-4)})=3^{(2x+3)}

\sf\:Now\:Bases\:of\:LHS\:and\:RHS\:are\:equal\:hence\:equate\:the\:powers

\implies\sf(4x-4)=(2x+3)

\implies\sf 4x-2x=3+4

\implies\sf 2x = 7

\implies\sf x = (\frac{7}{2})

Therefore option \sf( \frac{7}{2}) is correct

Similar questions