Math, asked by seeddemocracy7454, 1 year ago

95. Value of a3 + b3 + c3 +3abc if a + b + c = 12 and ab + bc + ca = 47

Answers

Answered by ashishks1912
6

GIVEN :

The values are a + b + c = 12 and ab + bc + ca = 47

TO FIND :

The value of a^3 + b^3+c^3- 3abc

SOLUTION :

Given that the values are a + b + c = 12 and ab + bc + ca = 47

We know the Algebraic identity

a^3 + b^3+c^3- 3abc = ( a + b + c ) ( a^2 + b^2 + c^2- ab - bc - ca )

Now we have to find the value of  a^2 + b^2 + c^2 :

By using the Algebraic identity

(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)

Putting the value of a + b + c = 12 and ab + bc + ca = 47 in the above formula,

( 12 )^2 = a^2 + b^2 + c^2 + 2 ( 47 )

144=a^2+b^2+c^2+94

a^2 + b^2 + c^2 = 144-94

a^2 + b^2 + c^2=50

Now, substituting value in the formula for a^3 + b^3+c^3- 3abc

a^3 + b^3+c^3- 3abc = ( a + b + c ) ( a^2 + b^2 + c^2 - ab - bc - ca )

a^3 + b^3+c^3- 3abc = ( a + b + c ) ( a^2 + b^2 + c^2 - ( ab + bc + ca ) )

a^3 + b^3+c^3- 3abc= ( 12 ) ( 50 - (47 ))

a^3 + b^3+c^3- 3abc=( 12 ) ( 3 )

a^3 + b^3+c^3- 3abc = 36

∴ the value of a^3 + b^3+c^3- 3abc is 36

Similar questions