Math, asked by rajraja35260, 5 months ago

(97xy) ³ answer it like 5 mark Q/A​

Answers

Answered by shardaudeshmukh
1

Answer:

(90+7)^{3} (xy)^{3}=912673x^{3} y^{3}(90+7)

3

(xy)

3

=912673x

3

y

3

Step-by-step explanation:

Since we need to expand (97xy)^3 using identity

So, we are expanding the given relation as follow

(97xy)^{3} =97^{3} (xy)^{3}=(90+7)^{3} (xy)^{3}(97xy)

3

=97

3

(xy)

3

=(90+7)

3

(xy)

3

...................(1)

since we know the identity

(a+b)^{3}=a^{3} +b^{3}+3ab(a+b)=a^{3} +b^{3}+3ab^{2} +3ba^{2}(a+b)

3

=a

3

+b

3

+3ab(a+b)=a

3

+b

3

+3ab

2

+3ba

2

...........................(2)

Apply the above identity to expand only 97^{3}97

3

here a=90 and b=7

(90+7)^{3}=90^{3} +7^{3}+3\times 90\times 7^{2} +3\times 7\times 90^{2}(90+7)

3

=90

3

+7

3

+3×90×7

2

+3×7×90

2

(90+7)^{3}=729000+343+170100+13230=912673(90+7)

3

=729000+343+170100+13230=912673 ..................(3)

put (90+7)^{3}=912673(90+7)

3

=912673 .......in equation (1)

we get,

(90+7)^{3} (xy)^{3}=912673x^{3} y^{3}(90+7)

3

(xy)

3

=912673x

3

y

3

Similar questions