Math, asked by aryansharma72, 11 months ago

999x+888y=1332
888x+999y=555
solve by simultaneous equation?​

Answers

Answered by snehalshinde01234
10

♡⚘✮ʜᴇʏᴀ ᴍᴀᴛᴇ ʜᴇƦᴇ ɪS ʏᴏᴜƦ ᴀɴSᴡᴇƦ :

we \: have, \:

999x \:  +  \: 888y =  \: 1332 \\ 888x \:   + 999y  = 555 \\</p><p> on \: dividing \: both \: eqn \: by \: 111, \\ </p><p>we \: get, \:  \\ 9x \ + 9y = 12...(1) \\ 8x + 9y = 5...(2) \\ </p><p>on \: multiplying \: eq. \: (1)by \: 9 \: and \: eq. \: (2) \: by \: 8 \: then \: we \: subtract \: eq \: (2) \: from \: eq \: (1) \:  \\ we \: get \:  \\ 81x \:  + 72 \: y \:  =  \: 108 \\ 64 x \:  + 72 \: y  \:  =  - 40 \\ 17x =  \frac{68 }{17}  = 4 \\ now \: put \: the \: value \: of \: x \: in \: eqn \: (1). \: we \: get \:  \\ 9 \times 4  + 8y = 12 \\ 36 + 8y = 12 \\ 8y = 12 - 36 \\ 8y =  - 24 \\ y =  \frac{ - 24}{8}  \\  =  - 3

♡ Hope it helps uh plzz mark as brainliest ♡

Similar questions