Math, asked by divs49, 1 year ago

99th derivative of sin2x

Answers

Answered by valetta
0

Answer:

So, 99th derivative is :  

f⁹⁹ = 2⁹⁹ cos(2x)

Explanation:

We handle the even and odd order derivatives apart.

f′(x) = 2cos(2x)                      1st derivative

f′′′(x) = −8cos(2x)                  2nd derivative

f′′′′′(x) = 32cos(2x)                3rd derivative

.

.

.

f^{2n+1}  = (-1)^{n} 2^{2n+1} cos(2x)

Then

f(x) = sin(2x)

f′′(x) = −4sin(2x)

f′′′′(x) = 16sin(2x)

.

.

.

f^{2n}  = (-1)^{n} 2^{2n} sin(2x)

Find 99th derivative. So, we plug n = 48 in f^{2n+1}  = (-1)^{n} 2^{2n+1} cos(2x)

f^{2*48+1}  = (-1)^{48} 2^{2*48+1} cos(2x)\\f^{99}  = 2^{99} cos(2x)

So, 99th derivative is :

f⁹⁹ = 2⁹⁹ cos(2x)

Similar questions