English, asked by pragya817, 6 months ago

9a whole square - 4whole square/9awhole square -16 + 24a please answer fast step by step please​

Answers

Answered by shalinisingh152004
0

Answer:

pta nhi... khud solve kr lo

Answered by kanwalfatima823
1

Explanation:

STEP

1

:

x2

Simplify ——

2

Equation at the end of step

1

:

35 x2

(((2•(a2))-9a)-(——•x))•((((9•——)•a2)-3a)-20)

12 2

STEP

2

:

Equation at the end of step 2

35 9a2x2

(((2•(a2))-9a)-(——•x))•((—————-3a)-20)

12 2

STEP

3

:

Rewriting the whole as an Equivalent Fraction

3.1 Subtracting a whole from a fraction

Rewrite the whole as a fraction using 2 as the denominator :

3a 3a • 2

3a = —— = ——————

1 2

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

3.2 Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

9a2x2 - (3a • 2) 9a2x2 - 6a

———————————————— = ——————————

2 2

Equation at the end of step

3

:

35 (9a2x2-6a)

(((2•(a2))-9a)-(——•x))•(——————————-20)

12 2

STEP

4

:

Rewriting the whole as an Equivalent Fraction :

4.1 Subtracting a whole from a fraction

Rewrite the whole as a fraction using 2 as the denominator :

20 20 • 2

20 = —— = ——————

1 2

STEP

5

:

Pulling out like terms :

5.1 Pull out like factors :

9a2x2 - 6a = 3a • (3ax2 - 2)

Trying to factor as a Difference of Squares:

5.2 Factoring: 3ax2 - 2

Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)

Proof : (A+B) • (A-B) =

A2 - AB + BA - B2 =

A2 - AB + AB - B2 =

A2 - B2

Note : AB = BA is the commutative property of multiplication.

Note : - AB + AB equals zero and is therefore eliminated from the expression.

Check : 3 is not a square !!

Ruling : Binomial can not be factored as the

difference of two perfect squares

Adding fractions that have a common denominator :

5.3 Adding up the two equivalent fractions

3a • (3ax2-2) - (20 • 2) 9a2x2 - 6a - 40

———————————————————————— = ———————————————

2 2

Equation at the end of step

5

:

35 (9a2x2-6a-40)

(((2•(a2))-9a)-(——•x))•—————————————

12 2

STEP

6

:

35

Simplify ——

12

Equation at the end of step

6

:

35 (9a2x2-6a-40)

(((2•(a2))-9a)-(——•x))•—————————————

12 2

STEP

7

:

Equation at the end of step

7

:

35x (9a2x2 - 6a - 40)

((2a2 - 9a) - ———) • —————————————————

12 2

STEP

8

:

Rewriting the whole as an Equivalent Fraction :

8.1 Subtracting a fraction from a whole

Rewrite the whole as a fraction using 12 as the denominator :

2a2 - 9a (2a2 - 9a) • 12

2a2 - 9a = ———————— = ———————————————

1 12

STEP

9

:

Pulling out like terms :

9.1 Pull out like factors :

2a2 - 9a = a • (2a - 9)

Adding fractions that have a common denominator :

9.2 Adding up the two equivalent fractions

a • (2a-9) • 12 - (35x) 24a2 - 108a - 35x

——————————————————————— = —————————————————

12 12

Equation at the end of step

9

:

(24a2 - 108a - 35x) (9a2x2 - 6a - 40)

——————————————————— • —————————————————

12 2

STEP

10

:

Trying to factor a multi variable polynomial :

10.1 Factoring 24a2 - 108a - 35x

Try to factor this multi-variable trinomial using trial and error

Factorization fails

Trying to factor a multi variable polynomial :

10.2 Factoring 9a2x2 - 6a - 40

Similar questions