Math, asked by antara24, 9 months ago

9a²b²x² - 16abcdx - 25c²d² =0... Solve it by completing squre method​

Answers

Answered by amankumaraman11
1

 \large \sf{9 {a}^{2} {b}^{2}   {x}^{2}  - 16abcdx - 25 {c}^{2}  {d}^{2} } = 0 \\  \\ \tt  \leadsto {(3abx)}^{2}  - 2(3abx) \bigg( \frac{16cd}{6}  \bigg) +  { \bigg( \frac{16cd}{6} \bigg)}^{2}  - {\bigg( \frac{16cd}{ 6} \bigg)}^{2}  -  {(5cd)}^{2}  = 0 \\  \\ \tt  \leadsto  {\bigg(3abx  -  \frac{16cd}{6} \bigg)}^{2}  - \bigg[ \frac{16cd}{6}  + 5cd\bigg]  = 0\\  \\  \tt \leadsto {\bigg(3abx -  \frac{16cb}{6} \bigg)}^{2}  - \bigg[ \frac{16cd + 30cd}{6} \bigg] = 0 \\  \\  \tt \leadsto {\bigg(3abx -  \frac{16cb}{6} \bigg)}^{2} -  \frac{46cd}{6}  = 0 \\  \\   \tt\leadsto \: {\bigg(3abx -  \frac{16cb}{6} \bigg)}^{2} -  {\bigg( \sqrt{ \frac{46cd}{6} } \bigg)}^{2}  = 0 \\  \\  \tt  \leadsto  \bigg(3abx -  \frac{16cd}{6} -  \sqrt{ \frac{46cd}{6} }  \bigg)\bigg(3abx -  \frac{16cd}{6} +  \sqrt{ \frac{46cd}{6} }  \bigg ) = 0 \\  \\   \\ \bf \therefore \:  \:  \:  \:  x = \boxed{  \frac{ \frac{16cd}{6} +  \sqrt{ \frac{46cd}{6} }  }{3ab}}  \:  \:   \:  \:  \: \: or \:  \: \:  \:  \:  \boxed{ \frac{ \frac{16cd}{6}  -  \sqrt{ \frac{46cd}{6} }  }{3ab} }

Similar questions