Physics, asked by rubabshreef, 8 months ago

9c and 16 c separate by 9m wht is zero field location ​

Answers

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Location=\frac{27}{7}\:m}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:   \implies Two \: charge \: particle = 9 \: C\: and \: 16 \: C \\  \\  \tt:  \implies Distance \: between \: them(r) = 9 \: m \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Place \: where \: electric \: field  \: is \: zero = ?

• According to given question :

 \tt \circ \:  q_{1}  =9 \: C \:  \:  \:  \:  \:  \:  \:  \:  \:  q_{2} = 16 \: C \\  \\  \tt \circ \:  r_{1} = x  \: m \:  \:  \:  \: \:  \:  \:  \:  \:  \:  r_{2}  =( 9 - x) \: m\\  \\  \bold{As \: we\: know \: that} \\  \tt:  \implies  E_{1} =  E_{ 2}  \\  \\ \tt:  \implies  \frac{K q_{1} }{ { r_{1} }^{2} }  =  \frac{K q_{2} }{ r_{2} }  \\  \\ \tt:  \implies  \frac{9}{ {x}^{2} }  =  \frac{16}{(9 - x)^{2} }  \\  \\ \tt:  \implies 16 {x}^{2}   = 9( {9 - x)}^{2}  \\  \\  \text{Taking \: underoot \:both \: side} \\ \tt:  \implies  \sqrt{16 {x}^{2}  }  =  \sqrt{9( 9 -  {x)}^{2} }  \\  \\ \tt:  \implies 4x = 3(9 - x) \\  \\ \tt:  \implies 4x = 27 - 3x \\  \\ \tt:  \implies 4x + 3x = 27 \\  \\  \green{\tt:  \implies x =  \frac{27}{7}  \: m} \\  \\   \green{\tt \therefore  \frac{27}{7}  \: m  \: \: from \: charge \:  q_{1} \: to \: the \: direction \: of \:  q_{2}\: net \: electric \: field \: will \: be \: zero}

Attachments:
Similar questions