Math, asked by santoshkk83, 11 months ago

9n+2*(3-n/2)-2-27n/3m*2 3=1/729 then prove m-n=2

Attachments:

Answers

Answered by Anonymous
76

Question :-

If

 \large  \dfrac{9^{n + 1} \times  \left( 3^{  - \frac{n}{2}} \right)^{ - 2}   - 27^n  }{(3^m \times 2)^3 } =  \dfrac{1}{729}

then, prove that m - n = 2.

Solution :-

 \large  \dfrac{9^{n + 1} \times  \left( 3^{  - \frac{n}{2}} \right)^{ - 2}   - 27^n  }{(3^m \times 2)^3 } =  \dfrac{1}{729}

 \large  \dfrac{(3^2)^{n + 1} \times  \left( 3^{  - \frac{n}{2}} \right)^{ - 2}   - (3^3)^n  }{(3^m \times 2)^3 } =  \dfrac{1}{3^6}

[Because 9 can be written as 3² and 27 as 3³ and 729 as 3 to power of 6]

 \large  \dfrac{3^{2(n + 1)} \times  3^{  - \frac{n}{2}( - 2)}  - 3^{3(n)} }{(3^m \times 2)^3 } =  \dfrac{1}{3^6}

 \bf  \because (a^m)^n =a^{mn}

 \large  \dfrac{3^{2n + 2} \times  3^{ - n( - 1)}  - 3^{3n} }{(3^m \times 2)^3 } =  \dfrac{1}{3^6}

 \large  \dfrac{3^{2n + 2} \times  3^n  - 3^{3n} }{(3^m \times 2)^3 } =  \dfrac{1}{3^6}

It can be written as

 \large  \dfrac{3^{2n} \times 3^2  \times  3^n  - 3^{3n} }{(3^m \times 2)^3 } =  \dfrac{1}{3^6}

 \large  \dfrac{3^{2n} \times 3^n  \times  3^2  - 3^{3n} }{(3^m \times 2)^3 } =  \dfrac{1}{3^6}

 \large  \dfrac{3^{2n + n} \times  3^2  - 3^{3n} }{(3^m \times 2)^3 } =  \dfrac{1}{3^6}

 \large  \dfrac{3^{3n} \times  3^2  - 3^{3n} }{(3^m \times 2)^3 } =  \dfrac{1}{3^6}

 \large  \dfrac{3^{3n} \times  3^2  - 3^{3n} }{(3^m)^3 \times  {2}^{3}  } =  \dfrac{1}{3^6}

 \bf  \because  {a}^{m} \times  {b}^{m} = (ab)^{m}

 \large  \dfrac{3^{3n} \times  3^2  - 3^{3n} }{3^{3m} \times  8} =  \dfrac{1}{3^6}

 \bf  \because (a^m)^n =a^{mn}

Taking 3^{3n} common

 \large  \dfrac{3^{3n}(3^2  -1) }{3^{3m} \times 8} =  \dfrac{1}{3^6}

 \large  \dfrac{3^{3n}(9  -1) }{3^{3m} \times 8} =  \dfrac{1}{3^6}

 \large  \dfrac{3^{3n}( \cancel 8) }{3^{3m} \times \cancel 8 } =  \dfrac{1}{3^6}

 \large  \dfrac{3^{3n}}{3^{3m} } =  \dfrac{1}{3^6}

 \large  \dfrac{3^{3n}}{3^{3m} } = {3}^{ - 6}

 \bf  \because \dfrac{1}{ {a}^{n} } =  {a}^{ -  n}

 \large  3^{3n - 3m}= {3}^{ - 6}

 \bf \because  \dfrac{ {a}^{m} }{ {a}^{n} } =  {a}^{m - n}

 \large  3n - 3m =  - 6

 \bf \because  {a}^{m}  \implies  {a}^{n}  =  m = n

 \large  3(n - m) =  - 6

 \large  n - m =   -  \dfrac{6}{3}

 \large  n - m =   -  2

 \large  n - m + 2=0

 \large  n + 2= m

 \large 2= m - n

 \large  \implies m - n = 2

Hence proved

Answered by rashilakhotia2006
17

Refer to the above attachment :-)

Attachments:
Similar questions