Math, asked by ananta5088, 2 months ago

9n×3²×(3-n/2)-²-(27)n/3³m×2³=1/27 prove m-n=1​

Answers

Answered by mathdude500
16

Appropriate Question :-

 \sf \: If \: \dfrac{ {9}^{n} \times{3}^{2} {\bigg( {3}^{ -  \frac{n}{2} } \bigg) }^{ - 2} -  {27}^{n}}{ {3}^{3m} \times  {2}^{3} } =  \dfrac{1}{27}, \: prove \: that \: m - n = 1

Basic Concept Used :-

Law of exponents :-

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{a^m\times{a^n}\:=\:a^{m\:+\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\purple{\dfrac{a^m}{a^n}\:=\:a^{m\:-\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\orange{\dfrac{1}{x^n}\:=\:x^{-n}\:}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\color{peru}{(a^m)^n\:=\:a^{m\times{n}}\:}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\red{ {x}^{0} = 1}}}}} \\ \end{gathered}

 \red{\large\underline{\bf{Solution-}}}

 \rm :\longmapsto\:\dfrac{ {9}^{n} \times{3}^{2} \times  {\bigg( {3}^{ -  \frac{n}{2} } \bigg) }^{ - 2} -  {27}^{n}}{ {3}^{3m} \times  {2}^{3} } =  \dfrac{1}{27}

 \rm :\longmapsto\:\dfrac{ {(3 \times 3)}^{n} \times{3}^{2} \times  {\bigg( {3}^{n} \bigg) } -  {(3 \times 3 \times 3)}^{n}}{ {3}^{3m} \times  {2}^{3} } =  \dfrac{1}{27}

 \rm :\longmapsto\:\dfrac{ {3}^{2n} \times{3}^{2} \times  {\bigg( {3}^{n} \bigg) } -  {3}^{3n}}{ {3}^{3m} \times  {2}^{3} } =  \dfrac{1}{3 \times 3 \times 3}

 \rm :\longmapsto\:\dfrac{ {3}^{3n} \times{3}^{2}  -  {3}^{3n}}{ {3}^{3m} \times  {2}^{3} } =  \dfrac{1}{ {3}^{3} }

 \rm :\longmapsto\:\dfrac{ {3}^{3n}( {3}^{2}  -  1)}{ {3}^{3m} \times  {2}^{3} } =  \dfrac{1}{ {3}^{3} }

 \rm :\longmapsto\:\dfrac{ {3}^{3n}(9  -  1)}{ {3}^{3m} \times  {2}^{3} } =  \dfrac{1}{ {3}^{3} }

 \rm :\longmapsto\:\dfrac{ {3}^{3n} \times 8}{ {3}^{3m} \times 8} =  \dfrac{1}{ {3}^{3} }

 \rm :\longmapsto\:\dfrac{ {3}^{3n}}{ {3}^{3m}} =  \dfrac{1}{ {3}^{3} }

\rm :\longmapsto\: {3}^{3n - 3m} =  {3}^{ - 3}

\rm :\longmapsto\:3n - 3m =  - 3

\rm :\longmapsto\:n - m =  - 1

\bf\implies \:m - n = 1

{\boxed{\boxed{\bf{Hence, Proved}}}}

Similar questions