Math, asked by jaya53, 1 year ago

9P5+9P4=10Pr.find r solve it.

Answers

Answered by skm8
2
9p5+9p4=10pr
45p+36p=10pr
81p=10pr
r=8.1
Answered by wagonbelleville
0

Answer:

The value of r = 4.705.

Step-by-step explanation:

We are given the equation, 9_{P_{5}}+9_{P_{4}}=10_{P_{r}}

Now, n_{P_{r}=\frac{n!}{(n-r)!}

So, we get,

9_{P_{5}}+9_{P_{4}}=10_{P_{r}}

i.e. \frac{9!}{(9-5)!}+\frac{9!}{(9-4)!}=\frac{10!}{(10-r)!}

i.e. \frac{9!}{4!}+\frac{9!}{5!}=\frac{10!}{(10-r)!}

i.e. 9\times 8\times 7\times 6\times 5+9\times 8\times 7\times 6=\frac{10!}{(10-r)!}

i.e. 15120+3024=\frac{10!}{(10-r)!}

i.e. 18144=\frac{3628800}{(10-r)!}

i.e. (10-r)!=\frac{3628800}{18144}

i.e. (10-r)!=200

As, we know, 5!=120 and 6!=720

So, 120<200<720

i.e. 5!<(10-r)!<6!

i.e. 5<(10-r)<6

i.e. -5<-r<-4

i.e. 4<r<5

So, from the graph, the value of r = 4.705.

Attachments:
Similar questions