Math, asked by ashwinrawat39, 10 months ago

9th class math if x +1/x = root 2 find (a) x3 +1/x3

Answers

Answered by Abhishek474241
4

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • \tt{X+\dfrac{1}{X}}=√2

{\sf{\green{\underline{\large{To\:find}}}}}

  • \tt{X^3+\dfrac{1}{X^3}}

{\sf{\pink{\underline{\Large{Explanation}}}}}

We know that

\boxed{\boxed{\sf\red{(a+b)^2=a^2+b^2+2ab}}}

Therefore

\tt{(X+\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}

Solving

\tt{X+\dfrac{1}{X}}=√2

Both side squaring

\tt{(X+\dfrac{1}{X})^2}=(√2)²

\implies\tt{(X+\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}=2

\implies\tt{4=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}

\implies\tt{4=X^2+\dfrac{1}{X^2}+2}

\implies\tt{2-2=X^2+\dfrac{1}{X^2}}

\implies\tt{0=X^2+\dfrac{1}{X^2}}

Now

\tt{X^3+\dfrac{1}{X^3}}

Formula used

\implies\tt{X^3+\dfrac{1}{X^3)}=(X+\dfrac{1}{x})(X^2+\dfrac{1}{X^2}-\frac{1}{X}\times{X)}}

utting value

\implies\tt{X^3+\dfrac{1}{X^3}=\sqrt{2}(0-1)}

\implies\tt{X^3+\dfrac{1}{X^3}=\sqrt{2}(-1)}

\implies\tt{X^3+\dfrac{1}{X^3}=-\sqrt{2}}

Answered by GSR9550
0

Answer:

x^{3} +\frac{1}{x} ^{3} = -\sqrt{2}

Step-by-step explanation:

(x+\frac{1}{x} )^{3} = x^{3} +(1/x)^{3} + 3(x^{2} )*\frac{1}{x} +3(x)*\frac{1}{x} ^{2}

(x+\frac{1}{x} )^{3} =x^{3} +\frac{1}{x} ^{3} +3x+\frac{3}{x}

=> x^{3} +\frac{1}{x} ^{3} =(x+\frac{1}{x} )^{3} -3(x+\frac{1}{x} )

=> x^{3} +\frac{1}{x} ^{3} =(\sqrt{2}  )^{3} -3(\sqrt{2}  )

=> x^{3} +\frac{1}{x} ^{3} =2\sqrt{2}  -3\sqrt{2}

=> x^{3} +\frac{1}{x} ^{3} =-\sqrt{2}

Similar questions