Math, asked by deepassraj, 1 day ago

9th Grade Maths. Solutions please
It would be helpful

Attachments:

Answers

Answered by TrustedAnswerer19
51

Answer:

Note :

 =  >  \:  \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}  \\  \\  =  >  \:  \:  \:  {a}^{m}  =  {a}^{n}   \:  \:  \:  \:  \therefore \: \:  \: m  = n

Now,

 \sf \:   \: \:  \:  \:  \:  \:  \frac{ {a}^{m}. {a}^{n}  }{ {a}^{k} }  =  {a}^{p}  \\  \sf \implies \:  {a}^{m} . {a}^{n}  =  {a}^{p} . {a}^{k}  \\ \sf \implies \:  {a}^{m + n}  =  {a}^{p + k}  \\ \sf \therefore \: \:  \:  \:  \:  \:   \: m + n = p + k

So option (d) is the correct answer.

Answered by mathdude500
19

\large\underline{\sf{Solution-}}

\large\underline{\sf{Given- }}

\rm :\longmapsto\:\dfrac{ {a}^{m}  \: . \:  {a}^{n} }{ {a}^{k} }  =  {a}^{p}

We know,

\boxed{ \bf{ \:  {x}^{m} \times  {x}^{n}  =  {x}^{m + n}}}

So, using this identity in numerator, we get

\rm :\longmapsto\:\dfrac{ {a}^{m + n} }{ {a}^{k} }  =  {a}^{p}

We know that,

\boxed{ \bf{ \:  {x}^{m}  \div   {x}^{n}  =  {x}^{m  -  n}}}

So using this identity, we get

\rm :\longmapsto\: {a}^{m + n - k}  =  {a}^{p}

Now, we know that,

\boxed{ \bf{ \:  {x}^{m} =  {x}^{n}  \:  \implies \: m = n}}

So, using this result we get

\rm :\longmapsto\:m + n - k = p

can be rewritten as

\rm :\longmapsto\:m + n = p + k

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \red{ \underbrace{ \boxed{ \bf{ \: \:  \:  Option \:  D) \: is \: correct \:  \:  \: }}}}

Additional Information :-

Important identities :-

\boxed{ \bf{ \:  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}}

\boxed{ \bf{ \:  {(x  -  y)}^{2}  =  {x}^{2}  +  {y}^{2}   -  2xy}}

\boxed{ \bf{ \:  {(x  -  y)}^{3}  =  {x}^{3}   -  {y}^{3}   -  3xy(x - y)}}

\boxed{ \bf{ \:  {(x   +  y)}^{3}  =  {x}^{3}    +  {y}^{3}    +   3xy(x  +  y)}}

\boxed{ \bf{ \:  {x}^{2} -  {y}^{2}  = (x - y)(x + y)}}

\boxed{ \bf{ \:  {x}^{3} +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}}

\boxed{ \bf{ \:  {x}^{3}  -   {y}^{3} = (x  -  y)( {x}^{2}   +  xy +  {y}^{2} )}}

\boxed{ \bf{ \:  {x}^{4}  -   {y}^{4} = (x  -  y)(x + y)( {x}^{2} +  {y}^{2} )}}

Similar questions