9x^2 - 6a^2x + (a^4 - b^4) =0
Answers
Answered by
31
Heya User,
--> ( 3x )² - ( 3x )( a² + b² + a² - b² ) + ( a⁴ - b⁴ ) = 0
=> ( 3x )² - ( 3x )( a² + b² ) - ( 3x )( a² - b² ) + ( a⁴ - b⁴ ) = 0
=> ( 3x )( 3x - a² - b² ) - ( a² - b² )( 3x - a² - b² )
=> ( 3x - a² + b² )( 3x - a² - b² ) √√ Done ^_^
Further factorization :->
---> [ 3x - ( a + b )( a - b ) ][ 3x - [ a² + b² ]]
--> ( 3x )² - ( 3x )( a² + b² + a² - b² ) + ( a⁴ - b⁴ ) = 0
=> ( 3x )² - ( 3x )( a² + b² ) - ( 3x )( a² - b² ) + ( a⁴ - b⁴ ) = 0
=> ( 3x )( 3x - a² - b² ) - ( a² - b² )( 3x - a² - b² )
=> ( 3x - a² + b² )( 3x - a² - b² ) √√ Done ^_^
Further factorization :->
---> [ 3x - ( a + b )( a - b ) ][ 3x - [ a² + b² ]]
Answered by
13
Answer:
9x^2-6b^2x-(a^4-b^4)
9x^2-6b^2x-a^4+b^4
By quadratic formula:
D=(-6b^2)^2-4×9×(-a^4+b^4)
D=36b^4+36a^4-36b^4
D=36a^4
Now,
X=-(-6b^2)+-√36a^4/2×9
X=6b^2+-6a^2/18
X=6b^2+6a^2/18
X=6(b^2+a^2)/18
X=b^2+a^2/3
X=6b^2-6a^2/18
X=6(b^2-a^2)/18
X=b^2-a^2/3
X=-(a^2-b^2)/3
So, the value of X=a^2+b^2/3,
X=-(a^2-b^2)/3
Hope it's help you
Similar questions
Physics,
8 months ago
Math,
8 months ago
English,
8 months ago
Social Sciences,
1 year ago
Chemistry,
1 year ago