Math, asked by arbazalibmki, 5 months ago

9x²+2x+1/9 factorise​

Answers

Answered by Anonymous
0

Answer:

Step-by-step explanation:

A whole number that is the square of an integer. Example:  

16

is a perfect square because  

4

4

=

16

.

Answered by ADARSHBrainly
20

Question -:-

Factorise

{\Large{\bf{ \implies9x^{2} + 2x + \cfrac{1}{9}}}}

Answer -:-

We know that quadratic equation is in form of

  • ax²+ bx + c

Also, We know about root of the quadratic equation can also be given by Quadratic formula.

{\large{\underline{\boxed{ \bf{\implies \frac{ - b \pm  \sqrt{ {(b)}^{2} - 4ac } }{2a}  }}}}}

So,

{\large{\sf{\implies 9 {x}^{2}  + 2x +  \cfrac{1}{9} }}}

Here

  • a = 9
  • b = 2
  • c = 1/9

So, according to the question roots of the equation are :-

● 1st Value of x

 \bf{\implies \cfrac{ - b  +  \sqrt{ {(b)}^{2} - 4ac } }{2a}  }

 \bf{\implies \cfrac{ - 2 +  \sqrt{ {(2)}^{2} - 4(9) \bigg( \cfrac{1}{9} \bigg)  } }{18}  }

 \bf{\implies \cfrac{ - 2 +  \sqrt{ 4 - \bigg( \cfrac{36}{9} \bigg)  } }{18}  }

 \bf{\implies \cfrac{  - 2  + \sqrt{4 -4 }  }{18}  }

\bf{\implies \cfrac{  - 2  + \sqrt{0 }  }{18}  }

\bf{\implies \cfrac{  - 2  + 0  }{18}  }

\bf{\implies \cfrac{  - 2   }{18}  }

{ \underline{ \boxed{ \green{\bf{\implies -   \frac  {1}{9} }}}}}

■ Second value of x

 \bf{\implies \cfrac{ - b   -   \sqrt{ {(b)}^{2} - 4ac } }{2a}  }

 \bf{\implies \cfrac{ - 2  -  \sqrt{ {(2)}^{2} - 4(9) \bigg( \cfrac{1}{9} \bigg)  } }{18}  }

 \bf{\implies \cfrac{ - 2  -   \sqrt{ 4 - \bigg( \cfrac{36}{9} \bigg)  } }{18}  }

 \bf{\implies \cfrac{  - 2 -  \sqrt{4 -4 }  }{18}  }

\bf{\implies \cfrac{  - 2   -  \sqrt{0 }  }{18}  }

\bf{\implies \cfrac{  - 2   -  0  }{18}  }

\bf{\implies \cfrac{  - 2   }{18}  }

{ \underline{ \boxed{ \green{\bf{\implies -   \frac  {1}{9} }}}}}

So, roots of the equation are :-

{ \underline{ \boxed{ \green{\bf{\implies -   \frac  {1}{9} }}}}} \:  \:  \:  \:  \:  \:  \: { \underline{ \boxed{ \green{\bf{\implies -   \frac  {1}{9} }}}}}

Similar questions