Math, asked by lollololololol, 1 year ago

a≠0 and a-1/a=4 find a2+1/a2

Answers

Answered by mayank2004raj
2

a -  \frac{1}{a}  = 4 \:  \\ we \: square \: both \: the \: sides \\ { (a -  \frac{1}{a} ) }^{2}   =  {4}^{2}  \\  =   {a}^{2}  + ( { \frac{1}{a} })^{2}   +  2 = 16 \\  \\ =  {a}^{2}  + ( { \frac{1}{a} })^{2}   = 16 - 2 = 14 \\ now  \: in \\ 2a +  \frac{1}{2a}  = x \\  = 2(a +  \frac{1}{a} ) = x \\ we \: squre \: both \: the \: sides \\  {(2(a +  \frac{1}{a} ))}^{2}  =  {x}^{2}  \\  = 4( {a}^{2}  +  {( \frac{1}{a}) }^{2} + 2) =  {x}^{2}   \\  = 4(14 + 2) =  {x}^{2}  \\  = 4 \times 16 =  {x}^{2}  \\  =  {x}^{2}  = 64 \\  = x =  \sqrt{64}  \\  = x = 8
Answered by Anonymous
7

Correct Question :-

If a - 1/a = 4, then find the value of a² + 1/a²

Answer :-

a² + 1/a² = 18

Solution :-

a - 1/a = 4

Squaring on both sides

(a - 1/a)² = (4)²

⇒ (a - 1/a)² = 16

We know that

(x - y)² = x² + y² - 2xy

Here x = a, y = 1/a

By substituting the values

⇒ (a)² + (1/a)² - 2(a)(1/a) = 16

⇒ a² + 1²/a² - 2 = 16

⇒ a² + 1/a² - 2 = 16

Transpose - 2 to RHS ( - 2 becomes + 2)

⇒ a² + 1/a² = 16 + 2

⇒ a² + 1/a² = 18

Therefore the value of a² + 1/a² is 18.

Identity used :-

• (x - y)² = x² + y² - 2xy

Similar questions