Math, asked by rajatrao404, 5 hours ago

A(-1,0),B(3,1) and D(-2,1) are the vertices of a parallelogram ABCD. Find the coordinates of the fourth vertex C.

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{Vertices of parallelogram ABCD are A(-1,0), B(3,1), D(-2,1)}

\underline{\textbf{To find:}}

\textsf{Fourth vertex C of the parallelogram}

\underline{\textbf{Solution:}}

\underline{\textsf{Concept used:}}

\boxed{\textbf{Diagonals of parallelogram bisect each other}}

\textsf{Let the fourth vertex be C(x,y)}

\textsf{Since the diagonals of parallelogram bisect each other,}

\textsf{we have,}

\textbf{Midpoint of diagonal AC=Midpoint of diagonal BD}

\implies\mathsf{\left(\dfrac{-1+x}{2},\dfrac{0+y}{2}\right)=\left(\dfrac{3+(-2)}{2},\dfrac{1+1}{2}\right)}

\implies\mathsf{\left(\dfrac{-1+x}{2},\dfrac{y}{2}\right)=\left(\dfrac{1}{2},\dfrac{2}{2}\right)}

\implies\mathsf{\left(\dfrac{-1+x}{2},\dfrac{y}{2}\right)=\left(\dfrac{1}{2},1\right)}

\textsf{Equating corresponding co-ordinates on bothsides, we get}

\mathsf{\dfrac{-1+x}{2}=\dfrac{1}{2}\;\;\&\;\;\dfrac{y}{2}=1}

\mathsf{-1+x=1\;\;\&\;\;y=2}

\mathsf{x=2\;\;\&\;\;y=2}

\therefore\textbf{The fourth vertex is (2,2)}}

\underline{\textbf{Find more:}}

If A(1,3) ,B(-1,2),C(x,4) and D(2,5) are vertices of parallelogram then write the value of x​

https://brainly.in/question/38145334  

Similar questions