Math, asked by suneethas059, 2 months ago

A(1,1), B(0, 1) and (3, K) are collinears find I'value​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that, A(1,1), B(0, 1) and (3, K) are collinear.

We know,

If A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) be the coordinates in cartesian plane, then points A, B and C are collinear, if

\begin{gathered}\boxed{\tt{x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2) = 0}} \\ \end{gathered}

So, here we have

\rm \: x_1 = 1 \\

\rm \: x_2 = 0 \\

\rm \: x_3 = 3 \\

\rm \: y_1 = 1 \\

\rm \: y_2 = 1 \\

\rm \: y_3 = K \\

So, on substituting the values in above expression, we get

\rm \:1(1-K) + 0(K-1)+3(1-1) = 0 \\

\rm \: 1 - K + 0 + 0 = 0 \\

\rm \: 1 - K  = 0 \\

\rm\implies \:K \:  =  \: 1 \\

\rule{190pt}{2pt}

Additional Information :-

1. Distance Formula

Let A(x₁, y₁) and B(x₂, y₂) be two points in the cartesian plane, then distance between A and B is given by

\begin{gathered}\boxed{\tt{ AB \: = \sqrt{ {(x_{2} - x_{1}) }^{2} + {(y_{2} - y_{1})}^{2} }}} \\ \end{gathered}

2. Section formula

Let A(x₁, y₁) and B(x₂, y₂) be two points in the cartesian plane and C(x, y) be the point which divides AB internally in the ratio m₁ : m₂, then the coordinates of C is given by

\begin{gathered} \boxed{\tt{ (x, y) = \bigg(\dfrac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}}, \dfrac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}}\bigg)}} \\ \end{gathered}

3. Mid-point formula

Let A(x₁, y₁) and B(x₂, y₂) be two points in the coordinate plane and C(x, y) be the mid-point of AB, then the coordinates of C is given by

\begin{gathered}\boxed{\tt{ (x,y) = \bigg(\dfrac{x_{1}+x_{2}}{2}, \dfrac{y_{1}+y_{2}}{2}\bigg)}} \\ \end{gathered}

4. Centroid of a triangle

Centroid of a triangle is defined as the point at which the medians of the triangle meet and is represented by the symbol G.

Let A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) be the vertices of a triangle and G(x, y) be the centroid of the triangle, then the coordinates of G is given by

\begin{gathered}\boxed{\tt{ (x, y) = \bigg(\dfrac{x_{1}+x_{2}+x_{3}}{3}, \dfrac{y_{1}+y_{2}+y_{3}}{3}\bigg)}} \\ \end{gathered}

5. Area of a triangle

Let A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) be the vertices of a triangle, then the area of triangle is given by

\begin{gathered}\boxed{\tt{ Area =\dfrac{1}{2}\bigg|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\bigg|}} \\ \end{gathered}

Similar questions
Math, 11 months ago