Math, asked by SwahaPattanayak, 3 months ago

a) {-1/2+1/3+1/6 } *(-2/5)
answer will be 0 but find out how the answer will be 0



please answer it fast and don't send rubbish answer

and answer it with process and send a pic or write the full answer and explain that how you did this

if u will give rubbish answer then it will be reported with 5 more answers

and try to answer my previous questions​

Answers

Answered by Itsanshita
3

Answer:

Using appropriate properties, find:

(i) -2/3 * 3/5 + 5/2 – 3/5 * 1/6 (ii) 2/5 * (3/-7) – 1/6 * 3/2 + 1/14 * 2/5

Answer:

(i) -2/3 * 3/5 + 5/2 – 3/5 * 1/6

= -2/3 * 3/5 – 3/5 * 1/6 + 5/2 [Using associative property]

= 3/5 * (-2/3 – 1/6) + 5/2 [Using distributive property]

= 3/5 * {(-4 - 1)/6} + 5/2 [LCM (3, 2) = 6]

= 3/5 * (-5/6) + 5/2

= -3/6 + 5/2

= -1/2 + 5/2

= (-1 + 5)/2

= 4/2

= 2

Step-by-step explanation:

this is the similar answer use this method for your answer

Answered by VεnusVεronίcα
3

  \:  \:  \: \sf  : \implies \:  \bigg( \dfrac{ - 1}{2}  +  \dfrac{1}{3}  +  \dfrac{1}{6}  \bigg)  \times  \bigg( \dfrac{ - 2}{5}   \bigg)

Solving the first bracket :

 \:  \:  \:  \sf :  \implies \:  \bigg( \dfrac{ - 1}{2}  +  \dfrac{1}{3}  +  \dfrac{1}{6}  \bigg)

LCM of 2, 3 and 6 is 6 :

 \:  \:  \:  \sf :  \implies \:  \dfrac{ - 1}{2}  \times  \dfrac{3}{3}  =  \dfrac{ - 3}{6}  \:  \:   \:  \red{|} \:   \: \:  \dfrac{1}{3}  \times  \dfrac{2}{2}  =  \dfrac{2}{6}    \:    \: \: \red{ | } \: \:   \:  \dfrac{1}{6}  \times   \dfrac{1}{1}  =  \dfrac{1}{6}

Adding them up :

 \:  \:  \:  \sf :  \implies \:  \bigg( \dfrac{ - 3 + 2 + 1}{6}  \bigg) \times  \bigg( \dfrac{ - 2}{5}  \bigg)

 \:  \:  \:  \sf : \implies \:  \bigg( \dfrac{ - 3 + 3}{6}  \bigg) \times  \bigg( \dfrac{ - 2}{5}  \bigg)

 \:  \:  \:  \sf :  \implies \:  \bigg( \dfrac{0}{6}  \bigg) \times  \bigg( \dfrac{ - 2}{5}  \bigg)

We know that anything divided by 0 is 0 :

 \:  \:  \:  \sf :  \implies \: (0) \times  \bigg( \dfrac{ - 2}{5}  \bigg)

Also, we know that anything multiplied to 0 gives 0 :

 \:  \:  \:  \sf : \implies \: 0

So, the final answer is :

 \boxed {\therefore \:  \bf{ The \: value \: of \: \bigg( \dfrac{ - 1}{2} +  \dfrac{1}{3}  +  \dfrac{1}{6}  \bigg) \times  \bigg( \dfrac{ - 2}{5} \bigg)  \:  is  \: 0 . }}

Similar questions