English, asked by deepali26gamer, 1 month ago

A= {1,2},B={1,2,3,4} ,C={5,6} verify A×(B intersection C) = (A×B)intersection (A×C)​

Answers

Answered by mathdude500
31

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:A = \{1,2\}

\rm :\longmapsto\:B = \{1,2,3,4\}

\rm :\longmapsto\:C = \{5,6\}

Consider,

\rm :\longmapsto\:B \:  \cap \: C

\rm \:  =  \:\{1,2,3,4\} \: \cap \: \{5,6\}

\rm \:  =  \: \phi

\bf\implies \:B \: \cap \: C \:  =  \:  \phi

Now, Consider

\rm :\longmapsto\:A \times (B \: \cap \: C)

\rm \:  =  \:\{1,2\} \times  \phi

\rm \:  =  \: \phi

So,

\rm :\longmapsto\: \boxed{ \bf{ \: A \times (B \: \cap \: C) \:  =  \:  \phi }}-  -  - (1)

Now, Consider,

\rm :\longmapsto\:A \times B

\rm \:  =  \:\{1,2\} \times \{1,2,3,4\}

\rm \:  =  \:\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)\}

Now, Consider,

\rm :\longmapsto\:A \times C

\rm \:  =  \:\{1,2\} \times \{5,6\}

\rm \:  =  \:\{(1,5),(1,6),(2,5),(2,6)\}

So,

\rm :\longmapsto\: \boxed{ \bf{ \: (A \times B) \: \cap \: (A \times C) \:  =  \:  \phi \: }} -  -  - (2)

So, From equation (1) and (2), we concluded that

\bf :\longmapsto\:A \times (B \: \cap \: C) = (A \times B) \: \cap \: (A \times C)

Hence, Proved

Additional Information :-

 \boxed{ \bf{ \: A \times B \:  \ne \: B \times A}}

 \boxed{ \bf{ \: n(A \times B) = n(A) \times n(B)}}

 \boxed{ \bf{ \: A \:  \times  \:  \phi \:  \:  =  \:  \:  \phi}}

Answered by pdpooja100
9

\scriptsize \colorbox{lightyellow} {\text{ \bf♕ Brainliest answer }}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:A = \{1,2\}

\rm :\longmapsto\:B = \{1,2,3,4\}

\rm :\longmapsto\:C = \{5,6\}

Consider,

\rm :\longmapsto\:B \: \cap \: C

\rm \: = \:\{1,2,3,4\} \: \cap \: \{5,6\}

\rm \: = \: \phi

\bf\implies \:B \: \cap \: C \: = \: \phi

Now, Consider

\rm :\longmapsto\:A \times (B \: \cap \: C)

\rm \: = \:\{1,2\} \times \phi={1,2}

\rm \: = \: \phi

So,

\rm :\longmapsto\: \boxed{ \bf{ \: A \times (B \: \cap \: C) \: = \: \phi}} - - - (1)

Now, Consider,

\rm :\longmapsto\:A \times B

\rm \: = \:\{1,2\} \times \{1,2,3,4\}={1,2}×{1,2,3,4}

\rm \: = \:\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)\}={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)}

Now, Consider,

\rm :\longmapsto\:A \times C:⟼A×C

\rm \: = \:\{1,2\} \times \{5,6\}={1,2}×{5,6}

\rm \: = \:\{(1,5),(1,6),(2,5),(2,6)\}={(1,5),(1,6),(2,5),(2,6)}

So,

\rm :\longmapsto\: \boxed{ \bf{ \: (A \times B) \: \cap \: (A \times C) \: = \: \phi \: }}

So, From equation (1) and (2), we concluded that

\bf :\longmapsto\:A \times (B \: \cap \: C) = (A \times B) \: \cap \: (A \times C)

Hence, Proved

Additional Information :-

\boxed{ \bf{ \: A \times B \: \ne \: B \times A}}

\boxed{ \bf{ \: n(A \times B) = n(A) \times n(B)}}

\boxed{ \bf{ \: A \: \times \: \phi \: \: = \: \: \phi}}

Similar questions