Math, asked by amena1129, 1 year ago

A (1,-2) B (5,2) C(3,-1)
D(-1,-5) are any four points.
Frame one mathematically correct
question using all four points and
solve it.​

Answers

Answered by mysticd
2

 \red {Show \:that \: the \: points \:A(1,-2) , }

\red{B(5,2), C(3,-1) \:and \: D(-1,-5) \:taken \:in}

\red{ that \:order \:are \: Vertices \:of \:a } \red {parallelogram.}

 \underline { \green { Solution :}}

Let the points A(1,-2), B(5,2) , C(3,-1) and D(-1,-5)

are Vertices of a parallelogram.

We know that the diagonals of a parallelogram bisects each other .

Therefore,

The midpoint of the diagonals AC and DB should be same .

Now, we\: find \:the \: mid-points \:of \:AC \\and \:DB \:by \:using \\ \big( \frac{x_{1}+x_{2}}{2},\\frac{y_{1}+y_{2}}{2}\big) \: formula .

 Mid-point \:of \:AC = \big( \frac{1+3}{2},\frac{-2-1}{2}\big) \\= \big( \frac{4}{2}, \frac{-3}{2}\big) \\= \big( 2 , \frac{-3}{2}\big) \: --(1)

 Mid-point \:of \:DB  = \big( \frac{5-1}{2},\frac{2-5}{2}\big) \\= \big( \frac{4}{2}, \frac{-3}{2}\big) \\= \big( 2 , \frac{-3}{2}\big) \: --(2)

Hence, midpoint \:of \:AC \:and \:midpoint \\of \:DB \:is \:same .

Therefore.,

 The \:points \:A,B,C\:and \:D \:are \: Vertices \\of \:a \: parallelogram.

•••♪

Attachments:
Similar questions