Math, asked by stepwalker, 11 months ago

A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The
angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After sometime, the angle of elevation reduces to 30º. Find the distance travelled by the balloon during the interval.​

Answers

Answered by Anonymous
117

\\

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\\

⎟⎟ ✪✪ QUESTION ✪✪⎟⎟

\\

A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After sometime, the angle of elevation reduces to 30º. Find the distance travelled by the balloon during the interval.

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\\

⎟⎟ ✰✰ ANSWER ✰✰ ⎟⎟

\\

✿✿ ʀᴇғᴇʀ ᴛᴏ ɪᴍᴀɢᴇ ғɪʀsᴛ ✿✿

\\

\tt\footnotesize{Height \:of \:the \:balloon \:from\: tower\:= \:88.2m}

\tt\footnotesize{Height\:of\:the\:girl\: =\: 1.2 m}

\tt\footnotesize{Angles\:of\: elevations\:=\:60° \:and\: 30°}

\tt\footnotesize{Let\:the\:distance\:travelled\:=\: d m}

\\

\tt\huge{From\:the\:figure}

\tt{tan\:60°\:= \:\frac{87}{x}}

\:\: \tt{\sqrt{3}\:=\:\frac{87}{x}}

\:\: \tt{87 \:= \:\sqrt{3 x}} ━━━━ ➀

\:\:\tt{x\:=\:\frac{87}{\sqrt{3}}m}

\tt{Also\:30°\:=\:\frac{87}{x\:+\:d}}

\:\:\tt{\frac{1}{\sqrt3}\:=\:\frac{87}{(x\:+\:d)}}

\:\:\tt{87\:=\:\frac{x\:+\:d}{\sqrt{3}}} ━━━━ ➁

ғʀᴏᴍ ➀ ᴀɴᴅ ➁

\:\:\tt{\sqrt{3}x\:=\:\frac{x\:+\:d}{\sqrt{3}}}

\:\:\tt{\sqrt{3}.\sqrt{3}x\:=\:x\:+\:d}

\:\:\tt{3x\:=\:x\:+\:d}

\:\:\tt{2x\:=\:d}

\tt{Distance\:travelled\:=\:2\:×\:\frac{87}{\sqrt{3}}}

\:\:\tt{\frac{2\:×\:29\:×\:\sqrt{3}\:×\:\sqrt{3}}{\sqrt{3}}}

\:\:\tt{58\sqrt{3}m}

\\

The distance travelled by the balloon during the interval = \huge\frak\pink{58\sqrt{3}\:m}

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\\

Attachments:
Answered by Anonymous
40

REFER TO ATTACHMENT......XD

Attachments:
Similar questions