A={1,3,5},B={2,3,5,6} and C= {1,5,6,7}.verify n (AUBUC)= n(A)+nAU n(B) +n(C) -n(AnB)- n (BnC)-n (AnC)+n (AnBnC)
Answers
Answered by
15
Chapter - Sets
Given: A = {1, 3, 5}, B = {2, 3, 5, 6}, C = {1, 5, 6, 7}
To prove: n(A U B U C) = n(A) + n(B) + n(C) - n(A∩ B) - n(B ∩ C) - n(A ∩ C) + n(A ∩ B ∩ C)
Proof:
- A U B U C = {1, 2, 3, 5, 6, 7}
- Then, n(A U B U C) = 6
- A = {1, 3, 5}
- Then, n(A) = 3
- B = {2, 3, 5, 6}
- Then, n(B) = 4
- C = {1, 5, 6, 7}
- Then, n(C) = 4
- A ∩ B = {3, 5}
- Then, n(A ∩ B) = 2
- B ∩ C = {5, 6}
- Then, n(B ∩ C) = 2
- C ∩ A = {1, 5}
- Then, n(C ∩ A) = 2
- A ∩ B ∩ C = {5}
- Then, n(A ∩ B ∩ C) = 1
Now, R.H.S. = n(A) + n(B) + n(C) - n(A ∩ B) - n(B ∩ C) - n(C ∩ A) + n(A ∩ B ∩ C)
= 3 + 4 + 4 - 2 - 2 - 2 + 1
= 6 = n(A U B U C) = L. H. S.
Hence proved.
This completes the verification.
Similar questions