Physics, asked by Jazzy123, 8 months ago

a 1.4cm long object is placed perpendicular to the principal axis of a convex mirror of focal length 15cm at a distance of 10cm from it calculate the location of the image,
height of the image ,
nature of the image​

Answers

Answered by ItzAditt007
2

Answer:-

  • Location Of Image = 6 cm behind the mirror.

  • Height of the image = 0.84 cm.

  • Nature of image = Virtual And erect.

Explanation:-

Given:-

  • Height of the object (ho) = 1.4 cm

  • Focal length of the convex mirror (f) = 15 cm.

  • Object distance (u) = 10 cm.

To Find:-

  • Location of the image (v).

  • Height of the image (hi).

  • Nature of the image.

Formulas Used:-

Mirror Formula:-

\orange{1. \:  \:  \boxed{ \pink{ \bf  \dfrac{1}{v}  +  \dfrac{1}{u}  =   \dfrac{1}{f} .}}}

Magnification Formula:-

 \orange{2. \:  \:  \boxed{ \pink{ \bf m =   - \dfrac{v}{u}  =  \dfrac{hi}{ho}. }}}

So Here,

  • v = ?? [To Find]

  • u = -10 cm (As the object distance is always taken as negative).

  • f = 15 cm (As the focal length of convex mirror is always positive).

  • hi = ?? [To Find].

  • ho = 1.4 cm

Now,

By putting the values in formula (1) we get:-

\tt\mapsto \dfrac{1}{v}  +  \dfrac{1}{u}   =  \dfrac{1}{f} .  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \tt\mapsto \dfrac{1}{v}  =  \frac{1}{f}  -  \frac{1}{u} .   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \tt\mapsto \dfrac{1}{v}   =  \bigg( \frac{1}{15 \: cm} \bigg) -  \bigg( \frac{1}{ - 10 \:cm}\bigg). \\  \\ \tt\mapsto \dfrac{1}{v}  =  \bigg(\frac{1}{15 \: cm}  +  \frac{1}{10 \: cm}  \bigg) \:  \: cm. \:  \:  \:   \:  \:   \\  \\  \tt\mapsto \dfrac{1}{v}  = \bigg( \frac{(1 \times 2) + (1 \times 3)}{30 \: cm} \bigg). \:  \:  \:  \:  \:  \:  \\   \\  \bf(by \:  \: taking \:  \: lcm). \\  \\ \tt\mapsto \dfrac{1}{v}  = \bigg( \frac{2 + 3}{30 \: cm} \bigg).  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \tt\mapsto \dfrac{1}{v}  = \cancel \frac{5}{30 \: cm}.  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \tt\mapsto \dfrac{1}{v}  =  \frac{1}{6 \: cm}.   \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \large \blue{\mapsto \boxed{ \red{ \bf v = 6 \: cm.}}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Therefore Image Distance Is 6 cm and since it is positive so the image is formed behind the mirror.

Similarly,

By Putting The Values in formula (2) we get:-

\tt\mapsto m  =  -  \dfrac{v}{u}  =  \dfrac{hi}{ho}.  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \tt\mapsto -  \frac{v}{u} =  \frac{hi}{ho}. \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \tt\mapsto \frac{ \cancel{ -}  \:  \: 6 \: cm}{ \cancel{ - } \:  \: 10 \: cm}  =  \frac{hi}{1.4 \: cm}. \\  \\  \tt\mapsto \cancel \frac{6 \: cm}{ 10 \:cm}  =  \frac{hi}{1.4 \:  \: cm}  . \:  \:  \:  \:  \:  \\  \\ \tt\mapsto \frac{3 \times 1.4 \: cm}{5}  = hi. \:  \:  \:  \:  \:  \:  \\  \\ \tt\mapsto hi =  \frac{4.2 \: cm}{5} . \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \large \red{\mapsto \boxed{ \blue{ \bf hi = 0.84 \: cm}}}  \:   \:  \:

Therefore The Heigth Of The Image Is 0.84 cm.

Therefore,

  • Image Position = 6 cm behind the mirror.

  • Height of the Image = 0.84 cm.

  • Nature of the Image = Virtual And Erect.
Similar questions