Math, asked by VεnusVεronίcα, 3 months ago

A 1.5m tall girl is standing at some distance from a 30m tall building. The angle of elevation from her eyes to the top of the building increases from 30° to 60° as she walks towards the building. Find the distance she walked towards the building.

» Don't spam!
» Figure is compulsory.
» Answer with proper explaination.​

Answers

Answered by Anonymous
49

Answer:

Given :-

  • A 1.5 m tall girl is standing at some distance from a 30 m tall building.
  • The angle of elevation from her eyes to the top of the building increases from 30° to 60° as she walks towards the building.

To Find :-

  • What is the distance she walked towards the building.

Solution :-

Let,

\mapsto Height of the building = AB

Given :

  • ∠ADF = 30°
  • ∠AEF = 60°

Then,

\implies \sf AF =\: AB - FB

  • AB = 30 m
  • FB = 1.5 m

\implies \sf AF =\: 30\: m -\: 1.5\: m

\implies \sf AF =\: \bigg(30 - \dfrac{15}{10}\bigg)\: m

\implies \sf AF =\: \bigg(\dfrac{300 - 15}{10}\bigg)\: m

\implies \sf AF =\: \bigg(\dfrac{285}{10}\bigg)\: m

\implies \sf\bold{\green{AF =\: 28.5\: m}}

Now,

\dashrightarrow \sf\bold{In\: \Delta AFE\: :-}

\implies \sf tan 60^{\circ} =\: \dfrac{AF}{EF}

Here,

  • AF = 28.5 m

\implies \sf \sqrt{3} =\: \dfrac{28.5}{EF}\: \: \bigg\lgroup \bold{\pink{tan 60^{\circ} =\: \sqrt{3}}}\bigg \rgroup\\

\implies \sf EF =\: \dfrac{28.5}{\sqrt{3}}

\implies \sf\bold{\purple{EF =\: \dfrac{28.5}{\sqrt{3}}\: m}}

Again,

\dashrightarrow \sf\bold{In\: \Delta AFD\: :-}

\implies \sf tan 30^{\circ} =\: \dfrac{AF}{DF}

Here,

  • AF = 28.5 m

\implies \sf \dfrac{1}{\sqrt{3}} =\: \dfrac{28.5}{DF}\: \: \bigg\lgroup \bold{\pink{tan 30^{\circ} =\: \dfrac{1}{\sqrt{3}}}}\bigg \rgroup\\

By doing cross multiplication we get,

\implies \sf DF =\: 28.5\sqrt{3}

\implies \sf\bold{\purple{DF =\: 28.5\sqrt{3}\: m}}

Now, we have to find the distance she walked towards the building :

\leadsto \sf \bold{DE =\: DF - EF}

Here we get,

  • DF = 28.5√3 m
  • EF = 28.5/√3

\leadsto \sf DE =\: 28.5\sqrt{3} -\dfrac{28.5}{\sqrt{3}}

\leadsto \sf DE =\: \dfrac{28.5 \times 3 - 28.5}{\sqrt{3}}

\leadsto \sf DE =\: \dfrac{28.5(3 - 1)}{\sqrt{3}}

\leadsto \sf DE =\: \dfrac{28.5(2)}{\sqrt{3}}

\leadsto \sf DE =\: \dfrac{28.5 \times 2}{\sqrt{3}}

\leadsto \sf DF =\: \dfrac{\dfrac{285}{\cancel{10}} \times {\cancel{2}}}{\sqrt{3}}

\leadsto \sf DE =\: \dfrac{\dfrac{\cancel{285}}{\cancel{5}}}{\sqrt{3}}

\leadsto \sf DE =\: \dfrac{57}{\sqrt{3}}

\leadsto \sf DE =\: \dfrac{57}{\sqrt{3}} \times \dfrac{\sqrt{3}}{\sqrt{3}}

\leadsto \sf DE =\: \dfrac{57 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}

\leadsto \sf DE =\: \dfrac{57\sqrt{3}}{3}\: \bigg\lgroup \bold{\sqrt{3} \times \sqrt{3} =\: 3}\bigg\rgroup\\

\leadsto \sf DE =\: \dfrac{\cancel{57}\sqrt{3}}{\cancel{3}}

\leadsto \sf DE =\: \dfrac{19\sqrt{3}}{1}

\leadsto \sf\bold{\red{DE =\: 19\sqrt{3}\: m}}

\therefore The distance she walked towards the building is 193 m .

[ Note : Please refer the attachment for the diagram. ]

Attachments:
Answered by suraj5070
49

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt A \:1.5\:m\: tall\: girl\: is\: standing\: at\: some\: distance\: from\: a\\\tt 30\:m \:tall\: building.\: The \:angle\: of\: elevation\: from\: her\\\tt eyes\: to \:the \:top of\: the\: building\: increases\: from\: {30}^{\circ}\\\tt to\: {60}^{\circ}\: as\: she\: walks\: towards\: the\: building. \:Find\: the\\\tt distance\: she \:walked \:towards \:the \:building.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \bf Heigh\:of \:the \:girl=1.5\:m
  •  \bf Height\:of \:the \:building =30\:m
  •  \bf Angle\: of\: elevation\: increased ={30}^{\circ}\:to\:{60}^{\circ}

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \bf Distance\: walked \:by\:the\:girl\:towards \:the \:building

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 {\pink {\underline {\bf {\pmb {Distance\: walked \:by\:the\:girl\:towards \:the \:building}}}}}

 {\orange {\mathfrak {Let,}}}

{\blue {\tt {\: \: \: \: \: \: \:AD\: represents\: the\: distance \:walked\: by\: the\: girl}}}

 \\

 \bf\leadsto BC=CG-BG

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies BG=30-1.5

 \implies {\blue {\boxed {\boxed {\purple {\sf {BG=28.5}}}}}}

 \\

\bf\leadsto In\:\triangle ABC,\angle A={30}^{\circ}

 {\blue {\boxed {\boxed {\boxed {\green {\pmb {tan\:\theta=\dfrac{opposite}{adjacent}}}}}}}}

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies tan\:{30}^{\circ}=\dfrac{CB}{AB}

 \bf \implies \dfrac{1}{\sqrt{3}}=\dfrac{28.5}{AB}

 \implies {\blue {\boxed {\boxed {\purple {\sf {AB=28.5\sqrt{3}}}}}}}

 \\

\bf\leadsto In\:\triangle BCD,\angle D={60}^{\circ}

 {\blue {\boxed {\boxed {\boxed {\green {\pmb {tan\:\theta=\dfrac{opposite}{adjacent}}}}}}}}

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies tan\:{60}^{\circ}=\dfrac{CB}{BD}

 \bf \implies \sqrt{3}=\dfrac{28.5}{BD}

 \bf \implies BD\sqrt{3}=28.5

 \implies {\blue {\boxed {\boxed {\purple {\sf {BD=\dfrac{28.5}{\sqrt{3}}}}}}}}

 \\

 \bf\leadsto\:\: \therefore AD=AB-BD

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies AD=28.5\sqrt{3}-\dfrac{28.5}{\sqrt{3}}

 \bf \implies AD=\dfrac{28.5\times 3-28.5}{\sqrt{3}}

 \bf \implies AD=\dfrac{85.5-28.5}{\sqrt{3}}

 \bf \implies AD=\dfrac{57}{\sqrt{3}}

 \bf \implies AD=\dfrac{57}{\sqrt{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}}

 \bf \implies AD=\dfrac{57\sqrt{3}}{3}

 \bf \implies AD=\dfrac{\cancel{57}\sqrt{3}}{\cancel{3}}

 \implies {\blue {\boxed {\boxed {\purple {\mathfrak {AD=19\sqrt{3}\:m}}}}}}

 {\underbrace {\red {\underline {\red {\overline {\red {\pmb {\sf {{\therefore} The\:distance \:walked\:by\:the\:girl\:towards \:the \:building\:is\:19\sqrt{3}\:m}}}}}}}}}

____________________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 {\sf {\pink {Trigonometric \:ratios\:table}}}

 \begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\theta & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \bf sin \:\theta & \sf 0 & \sf\dfrac{1}{2}& \sf\dfrac{1}{ \sqrt{2}} & \sf\dfrac{\sqrt{3}}{2} &\sf1 \\ \\ \bf cos \:\theta & \sf 1 &\sf \dfrac{\sqrt{3} }{2}&\sf \dfrac{1}{\sqrt{2}} &\sf \dfrac{1}{2} &\sf 0 \\ \\ \bf tan \:\theta &\sf 0 & \sf\dfrac{1}{\sqrt{3}}&\sf 1 & \sf\sqrt{3} & \sf \infty\end{array}}}\end{gathered}\end{gathered} \end{gathered}

Attachments:
Similar questions