A 1.6 m tall girl stands at a distance of 5.2 m from a lamp-post and casts a shadow of 6.8 m on the
ground. Find the height of the lamp-post by Using Trigonometric ratios.
Answers
(i) Using trigonometric ratios.
Let AB be the height of lamp post.
Now, in right △CDE,
⇒tanθ=
DC
ED
=
4.8
1.6
=
3
1
⟶(1)
In , △ACB,
⇒tanθ=
BC
AB
=
3.2+4.8
AB
=
8
AB
⟶(2)
From (1)&(2) we get
⇒
3
1
=
8
AB
⇒AB=
3
8
=2.67m
∴ Height of the lamp post =2.67m
(ii) Using similar triangles :
In △CDE&△CBA
i)∠CDE=∠CBA=90°
ii)∠DCE=∠BCA (Common)
∴△CDE∼△CBA ( By AA similarities )
Hence,
AB
DE
=
BC
CD
⇒AB=
CD
DE×BC
=
4.8
1.6×8
=
3
8
=2.67m
∴ Height of lamp post =2.67m.
Hence, the answer is 2.67.
Answer:
We are given that,
Height of the girl = 1.6 meters
Distance of girl from the lamp post = 3.2 meters
Distance of girl from the shadow = 4.8 meters
From the figure,we will find the angle θ using trigonometric form of the angles,
\tan \theta=\frac{Perpendicular}{Base}tanθ=
Base
Perpendicular
i.e. \tan \theta=\frac{1.6}{4.8}tanθ=
4.8
1.6
i.e. \tan \theta=0.33tanθ=0.33
i.e. \theta=\arc tan 0.33θ=\arctan0.33
i.e. θ = 18.26°
The height of the lamp post is given by,
\tan \theta=\frac{Perpendicular}{Base}tanθ=
Base
Perpendicular
i.e. \tan 18.26=\frac{x}{3.2+4.8}tan18.26=
3.2+4.8
x
i.e. \tan 18.26=\frac{x}{8}tan18.26=
8
x
i.e. x=8\times \tan 18.26x=8×tan18.26
i.e. x=8\times 0.33x=8×0.33
i.e. x = 2.64 meters.
Thus, the height of the lamp post is 2.64 meters.
Answer:
We are given that,
Height of the girl = 1.6 meters
Distance of girl from the lamp post = 3.2 meters
Distance of girl from the shadow = 4.8 meters
From the figure,we will find the angle θ using trigonometric form of the angles,
\tan \theta=\frac{Perpendicular}{Base}tanθ=
Base
Perpendicular
i.e. \tan \theta=\frac{1.6}{4.8}tanθ=
4.8
1.6
i.e. \tan \theta=0.33tanθ=0.33
i.e. \theta=\arc tan 0.33θ=\arctan0.33
i.e. θ = 18.26°
The height of the lamp post is given by,
\tan \theta=\frac{Perpendicular}{Base}tanθ=
Base
Perpendicular
i.e. \tan 18.26=\frac{x}{3.2+4.8}tan18.26=
3.2+4.8
x
i.e. \tan 18.26=\frac{x}{8}tan18.26=
8
x
i.e. x=8\times \tan 18.26x=8×tan18.26
i.e. x=8\times 0.33x=8×0.33
i.e. x = 2.64 meters.
Thus, the height of the lamp post is 2.64 meters.
Answer:
We are given that,
Height of the girl = 1.6 meters
Distance of girl from the lamp post = 3.2 meters
Distance of girl from the shadow = 4.8 meters
From the figure,we will find the angle θ using trigonometric form of the angles,
\tan \theta=\frac{Perpendicular}{Base}tanθ=
Base
Perpendicular
i.e. \tan \theta=\frac{1.6}{4.8}tanθ=
4.8
1.6
i.e. \tan \theta=0.33tanθ=0.33
i.e. \theta=\arc tan 0.33θ=\arctan0.33
i.e. θ = 18.26°
The height of the lamp post is given by,
\tan \theta=\frac{Perpendicular}{Base}tanθ=
Base
Perpendicular
i.e. \tan 18.26=\frac{x}{3.2+4.8}tan18.26=
3.2+4.8
x
i.e. \tan 18.26=\frac{x}{8}tan18.26=
8
x
i.e. x=8\times \tan 18.26x=8×tan18.26
i.e. x=8\times 0.33x=8×0.33
i.e. x = 2.64 meters.
Thus, the height of the lamp post is 2.64 meters.