A(1,7), B(2,4), C(k,5) are the vertices of a right angled ΔABC,Find k, if ∠C is a right angle
Answers
Answered by
7
Dear Student,
Solution:
If given points are vertex of right angle triangle,then we can apply Pythagoras theorem
AB² = AC²+BC²
now you have vertex of all three points, apply distance formula to calculate the distance of AB, AC and BC
AB = √{(2-1)² + (4-7)²} = √10
AB² = 10 -------eq1
BC = √{(2-k)² + (4-5)²} = √{(2-k)² +1}
BC² = (2-k)²+1 ----------eq2
AC = √{(1-k)² + (7-5)²} = √{(1-k)² +4}
AC² = (1-k)² +4------------eq3
Apply all distances into Pythagoras theorem
AB² = AC²+BC²
10 = (1-k)² +4 +(2-k)²+1
10 = 1 +k² -2k +4+ 4 +k²-4k+1
- 2k² +6k = 0
2k( -k+3) =0
2k = 0
k = 0
or -k+3 =0
-k = -3
k = 3
The point can be ( 0,5) and ( 3,5)
hope it helps you.
Attachments:
abhi178:
great thanks
Answered by
2
____________________________
In ∆ABC , <C = 90°
We know that ,
Let the two points A( x1, y1 ) , B(x2, y2 )
distance between then AB .
AB = √( x2 - x1 )² + ( y2 - y1 )²
______________________________
Now ,
i ) A( 1 , 7 ), B( 2 , 4 )
AB = √( 2 - 1 )² + ( 4 - 7 )²
= √ 1² + ( -3 )²
= √ 1 + 9
= √10
AB² = 10 ---( 1 )
ii ) A( 1 , 7 ), C( k , 5 )
AC = √( k - 1 )² + ( 5 - 7 )²
= √ k² + 1 - 2k + 4
= √ k² - 2k + 5
AC² = k² - 2k + 5 ----( 2 )
iii ) C( k , 5 ) , B( 2 , 4 )
CB = √ ( 2 - k )² + ( 4 - 5 )²
= √ 2² + k² - 4k + 1
= √ k² - 4k + 5
CB² = k² - 4k + 5 ------( 3 )
By Phythogarian theorem ,
AB² = AC² + CB²
From ( 1 ) , ( 2 ) and ( 3 ), we get
10 = k² - 2k + 5 + k² - 4k + 5
=> 10 = 2k² - 6k + 10
=> 0 = 2k² - 6k + 10 - 10
=> 2k² - 6k = 0
=> 2k( k - 3 ) = 0
=> 2k = 0 or k - 3 = 0
=> k = 0 or k = 3
Therefore ,
k = 0 or k = 3
•••••
In ∆ABC , <C = 90°
We know that ,
Let the two points A( x1, y1 ) , B(x2, y2 )
distance between then AB .
AB = √( x2 - x1 )² + ( y2 - y1 )²
______________________________
Now ,
i ) A( 1 , 7 ), B( 2 , 4 )
AB = √( 2 - 1 )² + ( 4 - 7 )²
= √ 1² + ( -3 )²
= √ 1 + 9
= √10
AB² = 10 ---( 1 )
ii ) A( 1 , 7 ), C( k , 5 )
AC = √( k - 1 )² + ( 5 - 7 )²
= √ k² + 1 - 2k + 4
= √ k² - 2k + 5
AC² = k² - 2k + 5 ----( 2 )
iii ) C( k , 5 ) , B( 2 , 4 )
CB = √ ( 2 - k )² + ( 4 - 5 )²
= √ 2² + k² - 4k + 1
= √ k² - 4k + 5
CB² = k² - 4k + 5 ------( 3 )
By Phythogarian theorem ,
AB² = AC² + CB²
From ( 1 ) , ( 2 ) and ( 3 ), we get
10 = k² - 2k + 5 + k² - 4k + 5
=> 10 = 2k² - 6k + 10
=> 0 = 2k² - 6k + 10 - 10
=> 2k² - 6k = 0
=> 2k( k - 3 ) = 0
=> 2k = 0 or k - 3 = 0
=> k = 0 or k = 3
Therefore ,
k = 0 or k = 3
•••••
Attachments:
Similar questions
Biology,
7 months ago
Math,
7 months ago
Biology,
1 year ago
Math,
1 year ago
Computer Science,
1 year ago