Math, asked by optimusprime50, 8 months ago

a+1/a =1 then a^3+1=?​

Answers

Answered by amankumaraman11
0

Given :-

 \boxed{ \huge \rm{}a +  \frac{1}{a}  = 1}

To find :-  \bf {a}^{3 + 1}

SOLUTION :-

 \bf \huge{a +  \frac{1}{a}  = 1} \\ \\  \rm \underline{ \overline{ cubing \:  \: both \:  \: sides}} \\  \\ =  >  \tt  {a}^{3}  +   \frac{1}{ {a}^{3} }  + 3( {\cancel{a}}) \bigg( \frac{1}{ \cancel{a}}  \bigg) \bigg[a +  \frac{1}{a}  \bigg]  =  {1}^{3} \\  \\   \tt=  >  {a}^{3}  +  \frac{1}{ {a}^{3} }  + 3\bigg[a +  \frac{1}{a}  \bigg] = 1 \\  \\ \tt  =  >  \:  \:  \:  \:  \:  \:  \:  {a}^{3}  +  \frac{1}{ {a}^{3} }  + 3(1) = 1 \\  \\   = > \tt  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {a}^{3}  +  \frac{1}{ {a}^{3} }  = 1 - 3 \\  \\  =  >    \boxed{\boxed{\tt \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {a}^{3}  +  \frac{1}{ {a}^{3} }  =  - 2 \:  \:  \:  \: }}

Also,

 \sf {a}^{3}  + 1 = ( - 2) -  \frac{1}{ {a}^{3} }  + 1 \\  \\ \sf  =  >  - 2 -  \frac{1}{ {a}^{3} }  + 1 \\  \\  \sf =  >  \frac{ - 3  + 1}{ {a}^{3} }   \:  \:  \:  \: =  \frac{ { - 2}}{  {{a}^{3} }}

 \\  \\  \\

Similar questions