Math, asked by AKUMAR11, 1 year ago

a+1/a=17/4 find the value of(a-1/a)

Answers

Answered by shashank1141989111
13
a+1/a=17/4
 ({a +  \frac{1}{a}  })^{2}  =  (\frac{17}{4} ) ^{2}
 {a }^{2}  + \frac{1}{ {a}^{2} }  + 2 = \frac{289}{16}
 {a}^{2}  +  \frac{1}{ {a}^{2} }  =  \frac{289}{16}  - 2
  {a}^{2}  +  \frac{1}{ {a}^{2} }  =  \frac{257}{16}
 {a}^{2}  +  \frac{1}{ {a}^{2} }  - 2 =  \frac{257}{16}  - 2
 ({a -  \frac{1}{a} })^{2}  = \frac{225}{16}
(a -  \frac{1}{a} ) =  \frac{15}{4}

Answered by adityaprasad0009
1

Answer:

(a+a1)2=(417)2 </p><p>{a }^{2} + \frac{1}{ {a}^{2} } + 2 = \frac{289}{16}a2+a21+2=16289 </p><p>{a}^{2} + \frac{1}{ {a}^{2} } = \frac{289}{16} - 2a2+a21=16289−2 </p><p>{a}^{2} + \frac{1}{ {a}^{2} } = \frac{257}{16}a2+a21=16257 </p><p>{a}^{2} + \frac{1}{ {a}^{2} } - 2 = \frac{257}{16} - 2a2+a21−2=16257−2 </p><p>({a - \frac{1}{a} })^{2} = \frac{225}{16}(a−a1)2=16225 </p><p></p><p></p><p>(a - \frac{1}{a} ) = \frac{15}{4}(a−a1)=415 </p><p>

Similar questions