Math, asked by aayushreeniroula, 9 months ago

(a+1/a)²-(a -1/a)² expand using algebraic formula answer is 2 a²+1/a² but I need explanation

Answers

Answered by ShresthaTheMetalGuy
20

Hey!!

Answer:

As, (a+b)²=a²+2ab+b²

(a–b)²=a²–2ab+b²

( a +  \frac{1}{a} )^{2}  - (a -  \frac{1}{a} )^{2} =

=( \frac{a ^{2}  + 1}{a} )  {}^{2} - ( \frac{a {}^{2}  - 1}{a} ) {}^{2}

=( \frac{(a {}^{2} + 1) {}^{2}  }{a {}^{2} } ) - ( \frac{ ({a}^{2} + 1) {}^{2}  }{a {}^{2} } )

= \frac{a {}^{4} + 2a {}^{2}   + 1}{a {}^{2} }  - (  \frac{a {}^{4}   -   2a {}^{2} + 1 }{a {}^{2} } )

= \frac{ {a}^{4} + 2a {}^{2} + 1 -  {a}^{4}   +2a {}^{2}   - 1 }{a {}^{2} }

= \frac{4a {}^{2} }{a {}^{2} }

 = 4

Answer is '4'!

Attachments:
Answered by anikmahanta460
0

Step-by-step explanation:

(a+b)²=a²+2ab+b²

(a–b)²=a²–2ab+b²

( a + \frac{1}{a} )^{2} - (a - \frac{1}{a} )^{2}(a+

a

1

)

2

−(a−

a

1

)

2

=

=( \frac{a ^{2} + 1}{a} ) {}^{2} - ( \frac{a {}^{2} - 1}{a} ) {}^{2}(

a

a

2

+1

)

2

−(

a

a

2

−1

)

2

=( \frac{(a {}^{2} + 1) {}^{2} }{a {}^{2} } ) - ( \frac{ ({a}^{2} + 1) {}^{2} }{a {}^{2} } )(

a

2

(a

2

+1)

2

)−(

a

2

(a

2

+1)

2

)

=\frac{a {}^{4} + 2a {}^{2} + 1}{a {}^{2} } - ( \frac{a {}^{4} - 2a {}^{2} + 1 }{a {}^{2} } )

a

2

a

4

+2a

2

+1

−(

a

2

a

4

−2a

2

+1

)

=\frac{ {a}^{4} + 2a {}^{2} + 1 - {a}^{4} +2a {}^{2} - 1 }{a {}^{2} }

a

2

a

4

+2a

2

+1−a

4

+2a

2

−1

=\frac{4a {}^{2} }{a {}^{2} }

a

2

4a

2

= 4=4

Similar questions