Math, asked by mariasania74, 10 months ago

a+1/a= 2 find a²+1/a² and a⁴+1/a⁴​

Answers

Answered by chnageswarr
3

Step-by-step explanation:

PLEASE MARK IT AS A BRAINLIEST ANSWER AND FOLLOW ME

Attachments:
Answered by SarcasticL0ve
6

Given:-

  •  \sf{a + \dfrac{1}{a} = 2}

To find:-

  •  \sf{a^2 + \dfrac{1}{a^2} = ?}

  •  \sf{a^4 \dfrac{1}{a^4} = ?}

Solution:-

  •  \sf{a + \dfrac{1}{a} = 2}

\implies Squaring both side:-

  •  \sf{ \bigg(a + \dfrac{1}{a} \bigg)^2 = (2)^2}

  •  \sf{a^2 + \bigg( \dfrac{1}{a} \bigg)^2 + 2 \times \cancel{a} \times \dfrac{1}{ \cancel{a}}= 4}

  •  \sf{a^2 + \dfrac{1}{a^2} = 4 - 2}

  • \bold{\underline{\boxed{\sf{\pink{\dag \; a^2 + \dfrac{1}{a^2} = 2}}}}} --------(1)

★ Now, From equation (1):-

\implies Squaring both side:-

  •  \sf{ \bigg( a^2 + \dfrac{1}{a^2} \bigg)^2 = (2)^2}

  •  \sf{a^4 + \bigg( \dfrac{1}{a^2} \bigg)^2 + 2 \times \cancel{a^2} \times \dfrac{1}{ \cancel{a^2}}= 4}

  •  \sf{a^4 + \dfrac{1}{a^4} = 4 - 2}

  • \bold{\underline{\boxed{\sf{\pink{\dag \; a^4 + \dfrac{1}{a^4} = 2}}}}}

\rule{200}{2}

Similar questions