(a - 1/a) = 3/4 so find (a³ - 1/a³)
Answers
Solution
Given :-
- a - 1/a = 3/4_______(1)
Find :-
- Value of ( a³ - 1/a³ )
Explanation
Using Formula
★ ( x³ - y³) = (x - y)(x² + xy + y²)
★ ( x - y)² = x² - 2xy + y²
So, squaring both side of equ(1)
==> (a - 1/a )² = (3/4)²
==> a² + 1/a² - 2 = 9/16
==> a² + 1/a² = 9/16 + 2
==> a² + 1/a² = (9 + 32)/16
==> a² + 1/a² = 41/16_________(2)
Now, Calculate ( a³ - 1/a³)
==> ( a³ - 1/a³) = ( a - 1/a)(a² + 1/a² + 1)
keep Value,
==> ( a³ - 1/a³) = (3/4)( 41/16 + 1)
==> ( a³ - 1/a³) = (3/4) [ 41 + 16)/16]
==> ( a³ - 1/a³) = 3/4 ( 57/16)
==> ( a³ - 1/a³) = 171/64
Hence
- Value of ( a³ - 1/a³) will be = 171/64
__________________
Step-by-step explanation:
Answer
Given:-
- a-1/a=3/4________(1)
Find:-
- value of (a³ - 1/a³)
Explanation:-
using formula
➥(x³-y³)=(x-y) (x²+xy+y²)
➥(x-y)²=x²-2×y+y²
So, squaring in both side of eqn (1)
➝(a-1/a)²=(3/4)²
➝a²+1/a²-2=9/16
➝a²+1/a²=9/16-12
➝a²+1/a²=9/16-2
➝a²+1/a²=(9+32)/16
➝a²+1/a²=41/16________(2)
Now ,Calculate (a³-1/a³)
➝(a³-1/a³)= (a-1/a) (a²+1/a²+1)
keep Value,
➝(a³-1/a³)= (3/4) (41/16+1)
➝(a³-a³)= [ (3/4) (41+16)/16 ]
➝(a³-1)a³)= 3/4 [ 57 /16 ]
➝(a³-171/64