Math, asked by anilkumarak1473, 11 months ago

A+1/a=p , a is not equal to zero . prove that: a^3+1/a^3= p(p^2-3)

Answers

Answered by sanketj
0

a +  \frac{1}{a}  = p  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... \: (i)\\  {(a +  \frac{1}{a} )}^{3}  =  {(p)}^{3}  \\  {a}^{3}  +  \frac{1}{ {a}^{3} }  + 3(a)( \frac{1}{a} )(a +  \frac{1}{a} ) =  {p}^{3}  \\  {a}^{3}  +  \frac{1}{ {a}^{3} }  + 3(p) =  {p}^{3}  \:  \:  \:  \:  \:  \:  \:  \:  \: ... \: (from \: i) \\  {a}^{ 3}  +  \frac{1}{ {a}^{3} }  =  {p}^{3}  - 3p \\  {a}^{3}  +  \frac{1}{ {a}^{3} }  = p( {p}^{2}  - 3)

... Hence Proved!

Similar questions