a+1/a=root 3 find value of a3+1/a3
Answers
Answer:
a+1/a = 3. eq(1)
a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes
a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3
a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula
a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula[ (a + b)^3 = a3 + 3ab(a+b) + b3 ]
a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula[ (a + b)^3 = a3 + 3ab(a+b) + b3 ]a3 + 3(a)(1/a)(a+1/a) + (1/a)^3 = 9
a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula[ (a + b)^3 = a3 + 3ab(a+b) + b3 ]a3 + 3(a)(1/a)(a+1/a) + (1/a)^3 = 9a3 + b3 +(a+1/a) = 9
a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula[ (a + b)^3 = a3 + 3ab(a+b) + b3 ]a3 + 3(a)(1/a)(a+1/a) + (1/a)^3 = 9a3 + b3 +(a+1/a) = 9As we know that. (a+1/a)= 3
a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula[ (a + b)^3 = a3 + 3ab(a+b) + b3 ]a3 + 3(a)(1/a)(a+1/a) + (1/a)^3 = 9a3 + b3 +(a+1/a) = 9As we know that. (a+1/a)= 3so,
a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula[ (a + b)^3 = a3 + 3ab(a+b) + b3 ]a3 + 3(a)(1/a)(a+1/a) + (1/a)^3 = 9a3 + b3 +(a+1/a) = 9As we know that. (a+1/a)= 3so,a3 + 1/a3 +3(3) = 9
a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula[ (a + b)^3 = a3 + 3ab(a+b) + b3 ]a3 + 3(a)(1/a)(a+1/a) + (1/a)^3 = 9a3 + b3 +(a+1/a) = 9As we know that. (a+1/a)= 3so,a3 + 1/a3 +3(3) = 9a3 +1/a3 + 9 = 9
a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula[ (a + b)^3 = a3 + 3ab(a+b) + b3 ]a3 + 3(a)(1/a)(a+1/a) + (1/a)^3 = 9a3 + b3 +(a+1/a) = 9As we know that. (a+1/a)= 3so,a3 + 1/a3 +3(3) = 9a3 +1/a3 + 9 = 9a3+1/a3 = 9-9
a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula[ (a + b)^3 = a3 + 3ab(a+b) + b3 ]a3 + 3(a)(1/a)(a+1/a) + (1/a)^3 = 9a3 + b3 +(a+1/a) = 9As we know that. (a+1/a)= 3so,a3 + 1/a3 +3(3) = 9a3 +1/a3 + 9 = 9a3+1/a3 = 9-9a3+1/a3 = 0 ✓✓ [SOLVED]