Math, asked by deekshitha4951, 6 months ago

a+1/a=root 3 find value of a3+1/a3​

Answers

Answered by sumitsom4400
0

Answer:

a+1/a = 3. eq(1)

a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes

a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3

a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula

a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula[ (a + b)^3 = a3 + 3ab(a+b) + b3 ]

a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula[ (a + b)^3 = a3 + 3ab(a+b) + b3 ]a3 + 3(a)(1/a)(a+1/a) + (1/a)^3 = 9

a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula[ (a + b)^3 = a3 + 3ab(a+b) + b3 ]a3 + 3(a)(1/a)(a+1/a) + (1/a)^3 = 9a3 + b3 +(a+1/a) = 9

a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula[ (a + b)^3 = a3 + 3ab(a+b) + b3 ]a3 + 3(a)(1/a)(a+1/a) + (1/a)^3 = 9a3 + b3 +(a+1/a) = 9As we know that. (a+1/a)= 3

a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula[ (a + b)^3 = a3 + 3ab(a+b) + b3 ]a3 + 3(a)(1/a)(a+1/a) + (1/a)^3 = 9a3 + b3 +(a+1/a) = 9As we know that. (a+1/a)= 3so,

a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula[ (a + b)^3 = a3 + 3ab(a+b) + b3 ]a3 + 3(a)(1/a)(a+1/a) + (1/a)^3 = 9a3 + b3 +(a+1/a) = 9As we know that. (a+1/a)= 3so,a3 + 1/a3 +3(3) = 9

a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula[ (a + b)^3 = a3 + 3ab(a+b) + b3 ]a3 + 3(a)(1/a)(a+1/a) + (1/a)^3 = 9a3 + b3 +(a+1/a) = 9As we know that. (a+1/a)= 3so,a3 + 1/a3 +3(3) = 9a3 +1/a3 + 9 = 9

a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula[ (a + b)^3 = a3 + 3ab(a+b) + b3 ]a3 + 3(a)(1/a)(a+1/a) + (1/a)^3 = 9a3 + b3 +(a+1/a) = 9As we know that. (a+1/a)= 3so,a3 + 1/a3 +3(3) = 9a3 +1/a3 + 9 = 9a3+1/a3 = 9-9

a+1/a = 3. eq(1)taking cube on both sides then eq(1) becomes(a+1/a)^3 = 3^3by using the formula[ (a + b)^3 = a3 + 3ab(a+b) + b3 ]a3 + 3(a)(1/a)(a+1/a) + (1/a)^3 = 9a3 + b3 +(a+1/a) = 9As we know that. (a+1/a)= 3so,a3 + 1/a3 +3(3) = 9a3 +1/a3 + 9 = 9a3+1/a3 = 9-9a3+1/a3 = 0 ✓✓ [SOLVED]

Similar questions