Math, asked by tarunkoshyp, 1 year ago

a=1-root2, find the value of (a-1/a)^3

Answers

Answered by uneq95
37
refer the image for solution.
Attachments:
Answered by HanitaHImesh
0

The value of (\frac{a-1}{a})³ is 20 + 14√2

Given,

a = 1 - √2

To Find,

(\frac{a-1}{a}

Solution,

(\frac{a-1}{a})³ can be calculated as follows -

a - 1 = 1 - √2 - 1

a - 1 = - √2

(\frac{a-1}{a}) = \frac{-\sqrt{2} }{1-\sqrt{2} }

(\frac{a-1}{a})³ = (\frac{a-1}{a}) * (\frac{a-1}{a}) * (\frac{a-1}{a})

(\frac{a-1}{a})³ = \frac{-\sqrt{2} }{1-\sqrt{2} }  *  (\frac{-\sqrt{2} }{1-\sqrt{2} }) * (\frac{-\sqrt{2} }{1-\sqrt{2} })

(\frac{a-1}{a})³ = \frac{-\sqrt{2} }{1-\sqrt{2} }  *  \frac{2}{(1-\sqrt{2})^2}

(\frac{a-1}{a})³ = \frac{-2\sqrt{2} }{1-\sqrt{2} (1+2-2\sqrt{2}) }  

(\frac{a-1}{a})³ = \frac{-2\sqrt{2} }{(1-\sqrt{2}) (3-2\sqrt{2}) }  

(\frac{a-1}{a})³ = \frac{-2\sqrt{2} }{3-3\sqrt{2}-2\sqrt{2} +4  }

(\frac{a-1}{a})³ = \frac{-2\sqrt{2} }{7-5\sqrt{2}  }

Rationalizing -

(\frac{a-1}{a})³ = \frac{-2\sqrt{2} }{7-5\sqrt{2}  } * \frac{7+5\sqrt{2} }{7+5\sqrt{2} }

(\frac{a-1}{a})³ = \frac{(-2\sqrt{2})(7+5\sqrt{2} ) }{7^2-(5\sqrt{2})^2  }

(\frac{a-1}{a})³ = \frac{-20-14\sqrt{2} }{49 - 50  }

(\frac{a-1}{a})³ = \frac{-20-14\sqrt{2} }{-1  }

(\frac{a-1}{a})³ = 20 + 14√2

Thus, the answer is 20 + 14√2.

#SPJ3

Similar questions